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Abstract

Skill determination in computer vision is the problem of evaluating how well
a person performs a particular task, by analysing a recorded video of that
performance. Typically, skill determination from video has focussed on short
tasks, where the performance of a single action is evaluated in accordance
with predefined scoring metrics. This thesis is the first work to explore ‘gen-
eral’ skill determination and demonstrates that skill can be automatically
determined from video for a variety of different tasks, ranging from surgery
to drawing and rolling pizza dough, using the same method. To do this, the
problem is formulated as a pairwise ranking of video collections, thus skill
can be determined relative to other videos in a task and does not require
task-specific knowledge or scoring metrics.

In long videos, parts of the video are often irrelevant for assessing skill and
there may be variability in the skill exhibited throughout a video. Therefore,
it is necessary to determine skill in long videos by attending to the skill-
relevant parts. This thesis thus proposes an approach to train temporal at-
tention modules, learned with only video-level supervision, which separately
attends to video parts indicative of higher and lower skill.

Learning to determining skill in each task individually limits the ability to
scale to a large number of tasks, due to the training and annotation cost.
This thesis explores whether there are common features for determining skill
shared across different tasks. It finds that there is potential for sharing
information even between seemingly unrelated tasks, however it is difficult
to predict what aspects tasks will share without external knowledge.

This thesis also presents the first method to learn adverbs from instructional
videos. It identifies that adverbs in the narrations of instructional videos
are often skill relevant as they describe how particular actions should be
performed. Using weak-supervision from adverbs in the narrations of in-
structional videos the method is able to learn representations shared across
different actions and tasks which describe the manner in which individual
actions have been performed.
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Chapter 1
Introduction

Skill determination is the problem of assessing how well a subject performs a given task.

Skill can be assessed by analysing a variety of different types of data, such as the time of

completion, an image of the end result of the task or accelerometer data which represents

the movement of the subject’s hands or tools. This thesis focuses on determining skill

from video, as videos capture information both about the motions and methods used to

complete task and the intermediate and final results of the task. Thus, it suitable for

capturing skill in a wide variety of different tasks.

How-to videos on sites such as YouTube and Vimeo, have enabled millions to learn

new skills by observing others more skilled at the task. From drawing to cooking and

repairing household items, learning from videos is nowadays a commonplace activity.

However, these loosely organised collections normally contain a mixture of contributors

with different levels of expertise. The querying person needs to decide who is better and

who to learn from. Furthermore, the number of how-to videos is only increasing, fuelled

by more cameras recording our daily lives. Being able to assess the skill of the subject,

or rank the videos based on the skill displayed, would enable delving into the wealth of

this online resource both for training humans and intelligent agents. This could allow for

both automated feedback and better selection of demonstrations e.g . which video should

a robot imitate to prepare you scrambled eggs for breakfast?.

Previous efforts in skill determination from video have focussed on specific tasks within

the domains of surgery [10, 221] or sports [9, 134, 135, 147]. Methods were thus designed

with prior knowledge about skill in the particular task and are therefore not widely

applicable to other tasks. This thesis instead looks at determining skill for a wide variety

of different tasks, with a focus on daily-living tasks, such as rolling pizza dough, drawing
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or tying a tie, which do not have predefined scoring metrics.

Videos of daily-living tasks are typically long, i.e. minutes in length. They consist of

many different actions which a subject performs to complete the goal of the task. There

may be different sequences of actions which can be used to complete a task well and

subjects performing the same sequences of actions may differ in their success. Thus

determining skill is not a question of identifying whether a set sequence of actions has

taken place. Instead, the aim is to determine how-well the overall task has been per-

formed, while simultaneously identifying the key properties which indicate an expert

performance of a particular task.

This thesis explores skill determination in long videos of daily-living tasks. It begins with

a global view of the task and aims to learn to determine skill for a variety of tasks from

only labelled data, without prior knowledge pertaining to individual tasks. The thesis

then moves on to explore some of the issues unique to skill determination in long videos.

It first identifies that many parts of a video are irrelevant for assessing skill and proposes

a method to assess the overall skill in a long video by attending to its skill-relevant parts.

It then looks at important actions within a task and learns to describe the manner in

which these actions are performed using adverbs from instructional videos.

1.1 Challenges and Contributions

As eluded to above, there are two main challenges to tackle when learning to determine

skill in daily-living tasks.

The first challenge is to be able to determine skill for a variety of tasks using the same

method. When aiming to determine skill for specific tasks, prior knowledge about skillful

performances in those tasks can be built into a model. For instance, measuring the

distance the needle moves in surgery would not be applicable to rolling pizza dough or

braiding hair. Instead, a method to determine skill in daily-living tasks should be widely

applicable to many different tasks.

The second challenge is identifying the parts of a video most useful for determining

skill. In long videos of daily-living tasks, there may be many parts of a task which are

irrelevant to determining skill. For instance, gathering the ingredients and turning on

the hob are not informative to how well a person makes scrambles eggs and will vary

little in terms of skill between videos. It is therefore important to be able to learn which

parts of a video are most useful to determining skill in addition to the features which

indicate a skillful performance.
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A third challenge is to overcome the above two challenges without requiring full-supervision

of every component. It would be possible to learn the important parts of a task by la-

belling the usefulness of each video frame to determining skill. However, collecting these

labels would be time-consuming and prevent a method from being applicable to many

tasks. Therefore, to learn to determine skill in daily-living tasks it is necessary to be

able to cope with a limited amount of labelled data.

The contributions of this thesis are:

• Chapter 3 formulates the problem of skill determination for daily-living tasks and

presents the first method to determine skill in videos for a wide variety of tasks.

• Two datasets for skill determination in daily-living tasks are presented in this

thesis, one in Chapter 3 and the other in Chapter 4.

• The challenges of fine-grained ranking of long videos are addressed in Chapter 4 by

demonstrating the need for rank-aware temporal attention and proposing a model

to learn this effectively.

• The transferability of features for skill determination are investigated in Chap-

ter 5, with experiments on the end-to-end (Chapter 3) and rank-aware attention

(Chapter 4) methods for multi-task learning and zero-shot transfer between tasks.

• Chapter 6 presents the first method for weakly-supervised learning from adverbs,

in which relevant video segments are embedded in a latent space and adverbs are

learnt as transformations in this space.

1.2 Thesis Overview

This thesis is organised as follows. Chapter 2 presents relevant work concerning under-

standing of long videos, ranking and skill determination.

Chapter 3 explores how to learn to determine skill from videos of daily-living tasks.

It presents a method which ranks skill in a variety of tasks without requiring prior

knowledge about each task. This chapter also discusses the collection and annotation of

the first skill determination dataset for daily-living tasks, EPIC-Skills.

Chapter 4 focuses on the issues with determining skill in long videos, as only certain video

parts will be relevant to determine skill. To tackle this problem, Chapter 4 presents a

method to learn temporal attention for skill determination. It proposes a rank-aware

loss which causes the model to focus on parts of the video indicative of high or low skill.
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The collection of a second skill determination dataset, BEST, consisting of longer and

more complex daily-living tasks is also covered in this chapter.

The methods presented in these two chapters are applicable to a wide variety of skill

tasks, however the model weights for different skill tasks have to be learnt separately

with individual ranking and attention. Chapter 5 examines this issue by focusing on

multi-task and transfer learning within the context of skill determination.

Chapter 6 takes a closer look at skillful performances of individual actions within a task.

Adverbs in the narrations of instructional videos are identified as a way to find which

actions are relevant to skill as they indicate how these actions should be performed

to complete the task well. The chapter proposes to learn a representation for these

adverbs from the weak-supervision of the narrations, where these representations are

learnt transformations in a video-text embedding space and are shared across actions

and tasks. Thus, given instructions for a particular task, the adverb representations

could be transferred to the new task to evaluate whether particular steps are performed

well.

Finally, Chapter 7 concludes this thesis with a summary of the findings and directions

for future work.
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Chapter 2
Background

This chapter provides a background to the topic of skill determination and explains the

necessary related work which this thesis builds upon. First, an overview of the relevant

work in video understanding is given in Section 2.1, with specific focus on understanding

of long videos and instructional videos. Section 2.2 then covers different techniques for

the problems of ranking and retrieval which are relevant to this thesis. Finally, prior

works on skill determination, action quality assessment and other related problems are

discussed in Section 2.3.

2.1 Understanding of Long Videos

Video understanding covers a broad range of topics with the overall aim to be able

to understand the contents of a video. The most well-studied problem within video

understanding is the task of action recognition which typically uses temporally segmented

clips of a few seconds in length.

However, there exist other problems within video understanding which require longer

term temporal understanding as the activity or task may occur over several minutes.

Furthermore, in many applications it is unreasonable to expect that videos will be well

segmented therefore it may be necessary to deal with untrimmed and noisy videos which

contain parts irrelevant to the target problem. There has been recent work which ex-

plores this problem, particularly in the context of action localisation [96, 125, 138, 195],

and aims to discover the relevant parts of a video during the learning process without

temporal annotations indicating where in a video these parts are.

Another area where long videos are prevalent is instructional videos. These videos are
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commonly available on sites such as YouTube and demonstrate how to complete a par-

ticular task. Instructional videos can be especially useful for learning as not only do they

contain video data which demonstrates how a task should be performed, they also con-

tain instructor’s narrations explaining the task and the steps being shown in the video.

However, the narrations tend to only be roughly aligned with the video and may also

contain parts irrelevant to the task being explained.

This section will begin looking at video understanding in general with Section 2.1.1.

Section 2.1.1 will mainly examine methods learnt from temporally segmented video clips

because this is where earlier work was focussed, with many techniques later being bor-

rowed for understanding of long videos. Section 2.1.2 will then cover related works which

aim to understand longer and untrimmed videos, with Section 2.1.3 focussing particularly

on works which learn from instructional videos.

2.1.1 Video Understanding with Clips

A large amount of work in video understanding has been focussed on the task of action

(or activity) recognition. In this task, the aim is to predict the action class present in a

given short video clip. While this thesis focuses on skill determination in long videos, it

is necessary to first see how video understanding is performed on short clips, as elements

of such methods are applicable to longer videos.

Handcrafted Features. Before deep learning, handcrafted features were typically

used for action recognition and other related video understanding tasks. For instance,

Laptev et al. [88] used Scale-Invariant Feature Transform (SIFT) [102] to find and track

interest points throughout a video. Local features such as histogram of oriented gradients

(HoG) [27] and histogram of optical flow (HoF) [28] are then extracted around these

tracked points. These features are pooled with Bag of Words (BoW) [26] to provide a

more compact representation of the video features and a Support Vector Machine (SVM)

is used to classify the action in a clip. This was the standard pipeline for many years,

with new methods proposing to improve certain elements of the pipeline, such as the

feature sampling method [187, 188, 189] or the encoding of the visual features [142].

One prominent example of the improvement of this pipeline is Improved Dense Trajec-

tories (IDT) [187]. In this paper, Wang et al. build on the dense trajectory feature

tracker from [189], which was shown to find higher overall quality trajectories than prior

approaches like SIFT. The authors propose to improve sampling of features by first re-

moving camera motion. This camera motion is estimated by matching keypoints across

frames with a combination of SURF features [8] and dense optical flow. Removing the
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camera motion improves the reliability of motion-based feature descriptors, such as HoF,

and therefore the performance of the method on action recognition. The results are fur-

ther improved by excluding any keypoints within a detected human body region from

the camera motion estimation.

Advent of CNNs. Convolutional Neural Networks [89] (CNNs) have the capability to

replace all the stages of the common pipeline as a single neural network can be trained

end-to-end to learn a hierarchy of features from raw pixel values to an output classifier.

CNNs are especially suited to images as multiple layers of convolutions and pooling can

effectively extract information from adjacent pixels and down-sample the image to repre-

sent more and more abstract features as further layers are added. CNNs saw an explosion

of usage for image classification after they demonstrated superior performance to hand-

crafted features [82] on large-scale image datasets such as ImageNet [32]. Initial attempts

to apply CNNs to video understanding [126] simply treated video frames as individual

images and applied a CNN to frames independently. However, this ignores additional

temporal aspect of video understanding problems as no motion is encoded.

Encoding Motion with CNNs. To encode this motion, Ji et al. [70] propose a 3D

convolutional neural network. As well as operating over the spatial aspect of the video

frames, the 3D convolutions in this network operate over the temporal dimension of a

stack of multiple contiguous frames. A downside of these 3D convolutions is that they

operate over a relatively small portion of the video temporally. Therefore, Ji et al.

combine the 3D CNN with auxiliary handcrafted motion features and regularise the 3D-

CNN to produce feature vectors close to these auxiliary features. While this paper shows

some promising results for CNNs in video understanding, even with this regularisation

the 3D CNN still struggles to outperform non deep learning methods on the KTH action

recognition dataset [158].

Karpathy et al. [78] attribute the under-performance of CNNs in video understanding to

the lack of large scale video classification datasets. Therefore, they propose the Sports-

1M dataset, a dataset of 1 million YouTube videos over 487 different sports classes. The

authors also propose a multi-stream CNN architecture which processes input frames at

multiple spatial resolutions: one low-resolution stream of the full image, and another

high-resolution stream of a centre crop of the image. To improve robustness when train-

ing the model, 20 clips are sampled from each video and after first cropping the centre

region, additional random crops are taken from this region with a 50% probability of the

crop being flipped. These pre-processing techniques were adopted by later methods and

remain common in CNNs developed for video understanding problems.

7



2.1 Understanding of Long Videos

Figure 2.1: Two stream architecture for video classification. In addition to
the spatial CNN which takes a single video frame as input, there is a temporal
CNN which takes multiple frames of dense optical flow extracted from the video.
The predictions from each CNN are then fused to obtain a final score. Figure
from [166].

With this architecture, Kaparthy et al. investigate different strategies of fusing infor-

mation from consecutive video frames to gain some temporal understanding. They find

slow fusion of temporal information throughout multiple layers of the network to be the

most successful approach, although the increase over fusing either at the very beginning

or very end of the network is marginal, and using only a single frame displays relatively

strong performance. This suggests that these methods of fusing features over multiple

video frames do not actually encode much motion information.

To better encode motion information, Simonyan and Zisserman [166] propose to include

a second CNN which operates on stacks of optical flows images, in addition to a CNN

on RGB frames. These optical flow images can be produced with any dense optical

flow method, Simonyan and Zisserman use Brox [12], while more recent methods use

TV-L1 [211]. The goal is for the CNN which takes RGB video frames as input to encode

relevant spatial information, while the CNN using optical flow frames will predominantly

learn temporal information. The two streams are trained independently and output

scores from each stream are then combined to produce the final predictions (see Fig-

ure 2.1). Simonyan and Zisserman found late fusion via averaging to be most successful,

with learning an additional linear SVM to fuse the features resulting in over-fitting.

The inclusion of the temporal stream with images of dense optical flow gave a vast im-

provement over a single spatial CNN and was one of the first deep learning works to

obtain results comparable with IDT in action recognition. This work was highly influ-

ential in the field of video understanding and a two-stream approach with RGB frames

and stacks of precomputed dense optical flow frames became the de-facto approach in

action recognition and other video understanding tasks.
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Figure 2.2: Temporal Segment Network architecture. An input video is divided
in K segments with a short snippet sampled from each video segment. A two-
stream CNN is used to obtain predictions for each snippet. The predictions from
snippets are first fused for each modality, before the final prediction is obtained
by fusing the spatial and temporal predictions. Figure taken from [194].

Towards Longer-Term Temporal Structure. While the work of Simonyan and

Zisserman improved the encoding of local motion information, the temporal stream is

not capable of capturing long range temporal structure. Wang et al. [194] build on the

two-stream approach and propose Temporal Segment Networks (TSN) to tackle this

problem. The authors note that “consecutive frames are highly redundant” [194] and

therefore opt for a sparse temporal sampling strategy. Sparse sampling also alleviates

issues with memory and computation limits.

The proposed architecture is depicted in Figure 2.2. Videos are first uniformly divided

into K segments and a short snippet is sampled from each segment. Each snippet is

passed through a two-stream CNN, with CNNs on the different snippets sharing param-

eters. A consensus is formed for each stream over the output scores for different snippets.

As in the original two-stream CNN, the outputs for each modality are fused by averaging

scores.

Wang et al. experiment with different segmental consensus functions, such as maximum

and weighted average as well as top K pooling and attention weighting in a later exten-

sion [196]. However, the authors conclude averaging to be the most effective. The paper

also proposes alternate modalities to encode the motion, namely RGB difference and

warped optical flow. RGB difference is the pixel wise change between two consecutive

frames. Warped optical flow is an adapted version of the dense optical flow previously

used in two-stream networks which additionally aims to remove camera motion. While

RGB difference and warped flow both have better classification accuracy than the stan-
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dard RGB input, they offer little additional benefit when the optical flow modality is

included. Using a BN-Inception [65] backbone, TSN obtained a new state-of-the-art

for action recognition on both UCF-101 [172] and HMDB-51 [84], outperforming the

two-stream approach on the former by 10%.

Although TSN has good performance, it still fails to take into account the evolution

of an action. It makes its predictions from additional video snippets over the original

two-stream architecture [166], however the network is invariant to the ordering of these

snippets as the segmental consensus is formed through averaging. Carreira and Zisser-

man [18] revisit the idea of 3D CNNs [70, 182] in order to better model temporal structure

in action recognition. They propose two-stream inflated 3D ConvNets (I3D) which uses

start-of-the-art image classifiers as a starting point by inflating the 2D convolutions and

pooling operations into 3D. Carreira and Zisserman argue that this approach is more ef-

fective than going through the manual trial and error process of searching for a good 3D

architecture. The I3D network consists of an appearance and motion stream, similar to

the two-stream architecture [166] and TSN [194]. Each stream takes a stack of 64 frames

as input, these are standard RGB frames for the appearance stream and dense optical

flow frames for the motion stream. Carreira and Zisserman also propose bootstrapping

existing weights from pre-trained ImageNet models in their 3D architecture by making

use of ‘boring’ videos, i.e. videos created from a repeated image. Weights of the original

3D filters are repeated across the temporal dimension and rescaled.

The proposed I3D network is compared to several other approaches to temporal mod-

elling, namely previous 3D CNN architectures, the two-stream architecture and adding

a Long Short Term Memory network (LSTM) on top the CNN output from multiple

consecutive frames. The I3D network obtains a > 9% improvement over these previ-

ous methods on the Kinetics dataset which is also proposed by Carreira and Zisserman

in this work. Smaller, but significant, improvement is also obtained on UCF-101 and

HMDB-51. The majority of the increase in accuracy comes from improvement on the

optical flow stream which the authors attribute to the larger temporal receptive field of

64 frames versus 10 in previous methods.

A large part of the subsequent success of the I3D architecture has been due to the

pre-training on the Kinetics dataset [79] which made learning the increased number of

weights in a 3D architecture more feasible. The Kinetics dataset consists of 10 second

clips of 400 action classes taken from YouTube videos. Each class contains at least 400

clips and the total number of clips is 306,245. The dataset was later extended to contain

600 [19] and more recently 700 [20] action classes. By first pre-training on Kinetics, I3D

obtains new state-of-the-art results for action recognition on UCF-101 and HMDB-51,
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outperforming TSN. There is a large increase over previous 3D CNN architectures such

as C3D [182] despite C3D being trained on the larger Sports1M dataset [70]. This is

likely due to a combination of factors. I3D makes use of more recent advances in image

recognition CNN architectures, thus it is a much deeper architecture than C3D but has

fewer parameters. The Kinetics dataset also contains a larger array of different actions

therefore learnt weights are likely more transferable to UCF-101 and HMDB-51.

The standard pipeline for video understanding on short clips has undergone a large

number of changes in recent years. CNNs have now replaced the previous separate

processes for identification of regions of interest, feature extraction, feature aggregation

and classification. The success of CNNs was largely due to the introduction of new

larger scale datasets for action recognition such as Sports1M, UCF-101, HMDB-51 and

Kinetics. These datasets have allowed exploration of how to best encode temporal in-

formation to gain understanding of videos beyond the individual frames they contain.

However, the methods examined in this section are limited in that they only aim to en-

code short-range temporal information as this is what the problem of action recognition

requires. Recent works utilise temporal modelling [94, 216], multi-stream 3D convolu-

tions [43], joint encoding of spatiotemporal and motion features [71] and more efficient

3D convolutions [183], however these works also only consider short-range temporal in-

formation.

2.1.2 Long and Untrimmed Videos

As Kaparthy et al. note “unlike images which can be cropped and re-scaled to a fixed

size, videos vary widely in temporal extent and cannot be easily processed with a fixed-

sized architecture” [78]. The works described in the previous section all focus on video

understanding in trimmed temporal clips of several seconds, thus they avoid this issue.

In many works, videos are treated as fixed sized clips and are short enough that the

proposed temporal architectures can operate over the entire video. Alternatively, many

methods rely on all the contents of the video being relevant to the ground-truth action

and thus form the final prediction from average pooling of sparsely sampled frames or

snippets.

Average Pooling. Ng et al. [210] study how existing temporal architectures can be

extended to classification in long videos. They test single frame methods against a

consensus formed from average pooling or an LSTM. These methods are tested on the

Sports1M [78] and UCF-101 [172] datasets. While UCF-101 is a trimmed action recog-

nition dataset containing clips of 10-15 seconds, the videos in Sports1M are much longer

and more varied. The first 2 minutes of videos in the Sports1M are taken for use in the
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models, with 120 frames sampled at 1 frame per second. Ng et al. find that while both

the LSTM and average pooling are better than using a single frame, the average pooling

significantly outperforms the LSTM by 4% on Sports1M. They also find that using the

full 120 frames sampled per video gives a further increase over performance in contrast

to sampling only 30 frames. The success of average pooling is likely due to two factors.

First, while the videos in Sports1M are long and may contain some irrelevant frames, only

5% of videos are labelled with another confounding action. Therefore, sampling of more

frames increases the likelihood of obtaining more useful information about the action of

interest. Second, LSTMs have been shown to struggle with longer sequences [165, 185]

and are somewhat difficult to train [83, 136, 165]. While LSTMs are able to remember

information over more steps than RNNs and thus solve some of the vanishing gradient

problems of RNNs, they still struggle with longer term information. Therefore, LSTMs

show inferior performance compared to non-recurrent networks in many sequence based

tasks [18, 50, 185].

Finding relevant events in video. In both short and long videos, it may be the

case that parts of the video are more relevant to the ground-truth label or temporally

trimmed videos may not be available in training or testing. Therefore, it can be desirable

to determine the most relevant temporal parts of the video for the task and limit the

prediction to only use these parts. While the relevance to the task can also be an issue

spatially in videos [34, 92, 97, 104, 171], the rest of this section focuses on temporal

relevance and attention as these works are more pertinent to this thesis.

One way of selecting relevant parts of a video is by learning a sampling distribution.

Piergiovanni et al. [146] do this for action recognition. They pose that activities are often

composed of multiple temporal parts or sub-events and propose learning gaussian filters

to identify these sub-events. Each gaussian filter is represented by a centre, duration and

resolution parameter. The centre and duration represent the shape of a single gaussian

distribution, while the duration indicates how often this distribution is repeated through

the video. The gaussian filters are learnt using pre-extracted CNN features from frames

of the input videos. Pre-extracted features are often used in these scenarios as it makes

the training process quicker and prevents over-fitting on a small dataset.

The features are pooled using the value of the gaussian distribution as the weighting

and then concatenated with the output of other filters. In training, these gaussian filters

are static and shared across all videos. In testing, the parameters of these filters can be

fine-tuned with LSTMs for individual test videos. Piergiovanni et al. first try sharing

the temporal filters across all activities, however this approach gave little benefit over

using predetermined filters in a pyramid structure [155]. Instead, temporal filters are
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learnt per-activity. This gives a significant increase over max-pooling the pre-extracted

CNN features, around 10% on HMDB-51. Piergiovanni et al. also test the impact of

extracting features from different pre-trained models: VGG [167], IDT [189], C3D [182]

and TDD [192]. The features used have a large impact on the final result, with TDD

performing 11% better than C3D, although the introduction of the learnt temporal

features show a similar increase on both feature types.

Moltisanti et al. [119] also use distributions to determine the most relevant frames for

action recognition. Instead of using temporally trimmed clips, as is common in action

recognition, Moltisanti et al. learn from untrimmed videos where actions are weakly

labelled with single temporal points and may overlap. To learn a representation for

these actions, each action is represented with a plateau function around the annotated

temporal point. Frames are then sampled from within these plateaus. The parameters of

the plateau functions are periodically updated based on the softmax scores of the relevant

action classes. With this method Moltisanti et al. are able to close the gap between this

type of weak-supervision with temporal points and full temporal boundary supervision

with a performance difference of only 1% on THUMOS. The gap is however much larger

on EPIC-KITCHENS [30] where there are many more action classes per video: 26%

classification accuracy with temporal points versus 36% with full supervision.

Temporal Attention. Using gaussian or plateau functions as a way of sampling frames

assumes that consecutive frames within an action or sub-event are all relevant. Instead,

there may be specific parts of an action, which are the most informative. An alternative

approach is to learn a function which directly predicts the usefulness of individual video

frames or snippets to the target problem. This is known as attention. While these

attention values could be supervised directly, this requires further training annotations

which are difficult to gather. Instead, attention values can be learnt with video-level

supervision rather than frame-level supervision.

Attention can be either hard or soft. In hard attention [6, 118], regions are selected

with hard binary choices — video frames can either be relevant to the task or can be

irrelevant and ignored. Hard attention methods face difficulty in training as they are not

differentiable. In soft attention, weighted averages are used instead of hard selections.

An overall video-level feature can be obtained by using the predicted attention values to

weight video segments when pooling.

Long et al. [101] use a soft attention to classify actions. Unlike the method of Pirgio-

vanni et al. [146], attention values are computed directly from input features instead of

using a semi-static distribution. Assuming a video of length T is represented by succes-
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sive frame or clip-wise features X = (x1, x2, ..., xT ). This attention value is computed

with a non-linear function represented by two fully-connected layers:

a = softmax(w1tanh(W2X + b1) + b2) (2.1)

This attention is then used to combine features into a single overall video feature with

weighted average pooling:

x = aX (2.2)

Long et al. note that “normally, a single attention unit can only be expected to reflect

one aspect of the video. However, there can be multiple pertinent parts in a video that

together describe the overall event” [101]. Therefore, they introduce multiple attention

filters, the outputs of which are concatenated to construct an ‘attention cluster’. An

attention cluster is used for each modality of the video: spatial, temporal and audio.

One difficulty with using multiple attention filters is that they may not naturally focus

on diverse aspects of the video and instead may attend to the same most informative

video parts, ignoring other complementary parts. To combat this, Long et al. include a

shifting operation with additional learnt linear parameters for each attention filter which

causes each filter to give a different distribution. This method is tested on the UCF-101,

HMDB-51 and Kinetics datasets. While the method did achieve state-of-the-art results,

its improvements over action recognition methods without attention, such as TSN [194],

are marginal.

Attention mechanisms become much more useful in longer videos, where frames are

more likely to be irrelevant to the ground-truth label. Pei et al. [139] estimate attention

values with a bidirectional RNN which takes into account context from surrounding

frames. This attention value is then incorporated into a recurrent network as the gating

mechanism. Using this attention mechanism as a scalar gate makes the model easier

to train than Gated Recurrent Units (GRUs) or LSTMs which typically have 2 and 3

vectorial gates respectively. Pei et al. demonstrate this by comparing to other recurrent

methods on three types of sequential data: audio, text and video. In video they test

on the CCV dataset [72], which contains YouTube videos of an average duration of 80

seconds. While this method does outperform a plain RNN, GRU and LSTM, it is not

compared to other attention methods and likely suffers from some of the same issues

with recurrent networks described previously.
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Weakly-Supervised Action Localisation. Wang et al. [195] proposed the problem

of weakly-supervised action localisation. In contrast with action recognition, the goal

of action localisation is to detect an action by identifying its start and end time in

addition to its class. This is usually trained with ground-truth temporal annotations

indicating the start and end time of actions. In weakly-supervised action localisation

these temporal bounds are not available, instead the goal is to learn from only video-

level labels indicating the action(s) present. Two datasets are commonly used for this

problem: THUMOS [73] and ActivityNet [15]. The THUMOS training set is based on

UCF-101 with additional untrimmed videos from 20 classes for validation and testing.

ActivityNet consists over 20,000 videos from 200 classes. Videos are typically between

5-10 minutes long with an average of 1.5 action instances per video and therefore much

longer and sparser than datasets typically used for action recognition.

To tackle the problem of weakly-supervised action localisation, Wang et al. propose

UntrimmedNet [195]. Clip proposals are first generated from the untrimmed videos,

either by uniformly splitting the videos or using HoG features to detect visual changes

between adjacent frames. These clips are then passed through a classification network.

To select the clips most likely to contain an action, Wang et al. propose two approaches.

The first is a hard selection approach which uses multiple instance learning (MIL) on

the classification scores. Instead of having individually labelled instances, MIL assumes

a bag of instances with an overall label for the bag which may differ between instances

within the bag. In negatively labelled bags all instances are negatively labelled, but

in positively labelled bags one or more instances will correspond to the label, with the

rest being negatives. In weakly-supervised action localisation, the bags are videos and

instances are video clips or frames. With this formulation, the k proposals with the

highest classification scores per action are used to train the model. Wang et al. also

propose a method of soft selection, similar to the softmax attention filter described

above. The soft and hard selection approaches have a similar performance to each

other, although both outperform previous methods for action recognition and obtain

good performance for weakly-supervised action localisation, comparable with some fully-

supervised methods.

Nguyen et al. [125] propose the Sparse Temporal Pooling Network (STPN) for weakly-

supervised action localisation which does not first require generating a set of clip pro-

posals. Instead, they use a soft attention directly on extracted I3D features from which

proposals are later selected. This attention is similar to the filter used by Long et al.

described above, but instead uses a sigmoid activiation function to detect multiple occur-

rences of the same action. As only parts of the video will contain the action of interest,
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Figure 2.3: Sparse Temporal Pooling Network. Input videos are first uniformly
split into T segments with an I3D feature extracted for each segment. The at-
tention module consists of two fully connected layers and computes an attention
weight for each segment. These attention weights are used to weight the cor-
responding segments in the temporal pooling and obtain an overall video-level
feature. The network is trained with a video-level classification loss and an L1

loss to enforce sparsity on the attention weights. Figure taken from [125].

Nguyen et al. optimise the attention with a L1 Norm sparsity loss as well as the video-

level classification loss. This is a class agnostic attention as the same attention filter is

used for videos of all classes, therefore it aims to separate segments of the video con-

taining actions from other background segments. To better localise actions of particular

classes, Nguyen et al. propose using temporal class activation maps. These are 1D maps

in the temporal domain taken from the classification module. By combining these maps

with the class agnostic attention, the sparse temporal pooling network is able to improve

on the prior results from UntrimmedNet [195] for both ActivityNet and THUMOS.

Paul et al. [138] follow the approach of Wang et al. and formulate weakly-supervised

action localisation as an MIL problem. They propose a MIL loss which uses the average

of the max k activations for each class within a softmax cross-entropy classification loss.

In their proposed method, W-TALC, the authors also propose a co-activity similarity

loss. This loss enforces the idea that in a pair of videos with the same class, temporal

regions identified that class should have similar features to each other. In turn, these

features should be different to those from other parts of the pair of videos identified

as other classes. This is estimated using the class softmax scores and enforced with a

ranking hinge loss. The authors find the co-activity loss to give the best improvement:
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without this the performance drops 7-8%. Although the addition of the MIL loss does

also give a boost to performance.

Liu et al. [96]1 note that while one video segment may be needed to recognise an action,

action localisation requires identifying all the segments relevant to the class of interest.

Therefore, the authors propose to model the completeness of the action while also sepa-

rating actions from background context which can be visually similar. Like STPN [96],

the proposed completeness modeling and context separation (CMCS) method also uses a

combination of class agnostic attention and class activation sequences. Class activation

sequences are produced with a temporal convolution. CMCS contains multiple branches

of class activations in order to identify the full extent of an action. These are optimised

with a diversity loss to encourage different branches to focus on separate parts of an

action. To better separate actions from their surrounding context, Liu et al. identify

clips within the training videos which contain little motion. These are used in train-

ing a pseudo background class. This method gives a marginal increase in performance

over the W-TALC method proposed by Paul et al. [138]. Each component gives a small

but complementary improvement, with the inclusion of multiple class-specific attention

branches and the use of the pseudo background class having the most effect.

In summary, it is often necessary to identify the most useful temporal parts of a video

for the target problem, particularly when dealing with long or untrimmed videos. Soft

attention is an effective way to learn this relevancy, especially when videos are minutes

in length such as in weakly-supervised action localisation. While significant progress

has been made in this area, the commonly used datasets THUMOS and ActivityNet

have some limitations, namely videos typically do not contain multiple different types of

actions. Instead of distinguishing between multiple confounding actions, the main task

is to distinguish between the action of interest and background segments where no action

is happening. Chapter 4 and Chapter 6 explore these challenges further, with Chapter 4

focussing on temporal attention for skill determination and Chapter 6 aiming to identity

segments relevant to a given action within instructional videos.

2.1.3 Instructional Videos

Instructional videos, also known as ‘how-to’ videos, demonstrate how one should com-

plete a particular task. As well as including a visual demonstration of the task, instruc-

tional videos are usually narrated by the instructor to explain what is happening and

1Concurrent to the work presented in Chapter 4, also published in CVPR 2019.
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to draw attention to critical elements of the task. Millions2 of people watch narrated

instructional videos to learn how to cook new dishes, assemble flatpack furniture or

even perform car maintenance tasks. These videos are typically minutes in length, sim-

ilar to the videos used for action localisation tasks. However, different to those videos,

instructional videos contain many different actions occuring in quick succession.

Instructional videos are also different in that the accompanying narrations can act as a

form of free supervision. These narrations are transcribed into text for subtitles either

manually or automatically. While the narrations, and corresponding subtitles, are only

roughly aligned with the video and may contain tangents irrelevant to the task, these

narrations contain information which explains what the instructor is doing in the video.

Therefore, many works have aimed to learn from instructional videos datasets [2, 110,

160, 217, 218] with the weak supervision provided by the narrations.

Movies are another popular source of video dataset with free weak-supervision [36, 37,

88, 176]. In movies, this supervision comes from either the subtitles of the actors speech

or from the script, which contains stage directions in addition to a transcript of the

speech. However, movies typically focus on talking heads with few object interactions.

Instructional videos focus on object interactions as opposed to person interactions and as

their purpose is to explain how to perform a task well, they are inherently more related

to determining skill.

Step Localization. One of the most well studied problems in instructional videos is

localisation of the key steps of a task [2, 61, 105, 151, 161, 218]. This has similarities to

the action localisation problem covered in the previous section as the goal is to learn a

representation to find the temporal bounds of particular steps or actions. However, step

localisation in instructional videos makes use of the steps being shared between multiple

videos of the task and often assumes there is a list of steps consistent throughout all

videos of a task with a set order. In reality there is some variance between videos, with

some steps being performed in a different order or omitted entirely in some videos.

Alayrac et al. [2] were the first to study step localisation in instructional videos while

only using supervision from the accompanying narrations. They present an instructional

video dataset of five tasks: making a coffee, changing a car tire, jumping a car, performing

cardiopulmonary resuscitation and repotting a plant. The dataset contains 30 videos of

each task. To discover and localise the steps within a task, Alayrac et al. take all the

videos of a single task and perform a two-stage clustering process where the narrations

2Many instructional videos on YouTube have more than 10 million views, for example www.youtube.
com/watch?v=s9r-CxnCXkg

18

www.youtube.com/watch?v=s9r-CxnCXkg
www.youtube.com/watch?v=s9r-CxnCXkg
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Figure 2.4: The CrossTask dataset consists of instructional videos of ‘primary’
and ‘related’ tasks. Related tasks are distinct from primary tasks, but may share
some steps or particular verbs and nouns within those steps. For instance, ‘cut’
is present in both ‘can tomato sauce’ and ‘make bread & butter pickles’. Figure
from [218].

of each video are first clustered, followed by the videos. The text is clustered first as the

authors assume variability in language is easier to capture than visual variability. To

cluster the text, direct object relations between verbs and nouns are discovered to better

focus on the relevant portions of the narrations. The order of steps discovered through

the text clustering is then enforced when clustering video snippets. This method is able

to recover similar verb-object descriptions to the ground-truth steps in the five tasks,

albeit often with some additional stages. The approach also performs step localisation

well, although it is far below a fully-supervised approach. It struggles with the repetitive

steps in jump car and the variability of the narrations in make coffee.

Zhukov et al. [218] aim to use similarities between related tasks to better localise steps

within instructional videos. For this purpose they propose the CrossTask dataset which

contains 4.7K instructional videos over 83 different tasks within cooking, car repair and

DIY. Of these tasks, 18 are primary tasks, each with 80 videos, and the other 65 are

related tasks with 30 video per task. These related tasks come from similar domains to

a primary task and will likely share some actions and objects with the primary tasks

(see Figure 2.4). For instance, ‘make latte’ is a primary task, while ‘make caramel

macchiato’ (a different type of coffee) is a related task. The primary tasks are annotated

with temporal localisations of the steps within the task. For each task an ordered list of

steps is provided, this is obtained from the WikiHow [1] description of the task.

Zhukov et al. aim to make use of objects and actions being common across tasks and learn
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a component model shared between these tasks. Steps can be classified and localised

with a single component model instead of learning the steps for different tasks separately

as was done by Alayrac et al. [2] and many others [61, 105, 151, 161]. To learn to locate

the steps within a video, a classifier is learnt for each action and object, i.e. there is a

classifier for ‘pour’ and a classifier for ‘milk’ which can then be combined to identify the

step ‘pour milk’. These classifiers are optimised alternately with the localisation module

to learn a representation of the step components within a task. The localisation module

learns a binary label matrix indicating the assignment of video snippets to the known

ordered list of steps, which is optimised in combination with several constraints: the

temporal ordering of steps, each step occurring at least once and that the step should

appear close to where it occurs in text. The use of the component modules allows the

method to be applied to previously unseen tasks, as classifiers for new steps can be built

from the learnt components. For instance, the classifier for ‘pour water’ in ‘make a latte’

can be built from the components of ‘pour milk’ in ‘make pancakes’ and ‘boil water’ in

‘cook Brazilian rice’. Zhukov et al. find this sharing of components between the primary

and related tasks gives an increase of 4%.

Instructional Videos for Pre-training. Miech et al. [110] present the large-scale

HowTo100M dataset which contains 136 million video clips from 1.22 million narrated

instructional videos. To collect this dataset Miech et al. first acquired a list of ‘how-to’

tasks from WikiHow. After filtering out tasks containing non-physical actions, such as

‘feel’, and abstract categories, such as relationship advice, 23,611 visual tasks remained.

Videos are collected by querying YouTube for these tasks and selecting popular videos

with English subtitles. It is worth noting that the tasks and videos in the CrossTask

dataset are a subset of the HowTo100M dataset.

Videos are split into clips based on the duration of each subtitle. The labelling is only

weakly-supervised as the narrations are only roughly aligned with the contents of the

video. In addition, while the narrations will often describe what is happening, they will

also contain some irrelevant information such as title credits, anecdotes and information

about alternate ways the task could be done. This means the narrations are quite noisy

when used as labels. The authors note that only in 51% of cases one or more of the

narrated actions or objects are present within the corresponding video clip.

Despite the noise and weak supervision, HowTo100M is a useful dataset due to its size and

diversity, particularly for pre-training video. Miech et al. learn a video-text embedding

space with these noisy video-caption pairs. This model is then applied to several down-

stream tasks, such as step localisation on the CrossTask dataset [218]. Interestingly,

training for video retrieval on HowTo100M without any fine-tuning beats the perfor-
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mance of Zhoukov et al. [218] on CrossTask. Even with more dissimilar target data,

HowTo100M is still beneficial, with pre-training on HowTo100M improving performance

for clip retrieval on YouCook2 [217] and MSR-VTT [204].

Other Uses of Instructional Videos. Instructional videos have also been used for

variety of other tasks. For instance, Alayrac et al. [3] aim to discover the various states

an object can have and which actions cause changes between these states. They cluster

objects with a similar appearance into multiple different states. This clustering is done

under the constraints that only one object can be manipulated at a time and that,

within a video, every occurrence of the first state is before any occurrence of the second,

transformed state. Alayrac et al. then find actions which occur during the transition

between discovered object states. While the majority of this method is unsupervised and

does not use supervision from the instructional videos’ narrations, the authors do extend

to retrieving clips via text. In their main evaluation setup, clips of the instructional

videos have been selected such that they contain a single object state transformation

(as well as other irrelevant segments). The authors extend the discovery of such clips to

a text retrieval problem where an SVM classifier is used to locate a given action. The

performance of the object state discovery and action localisation is much lower on these

automatically collected clips than the curated collection, however the proposed model

still outperforms the baselines by a significant margin.

Related to object state discovery is the task of procedure planning. Chang et al. [22]

predict the actions needed to obtain the result in a goal image from a given starting

image. To do this they propose two modules, one which predicts the next action based

on the current state and previous action and another which predicts the next state given

the current state and next action. These models can be combined and iterated between

to predict the path of actions and states from the start to the goal. The two models are

trained with information about the intermediate actions and states between start and

goal and are applied to new videos of previously seen tasks. The authors demonstrate

that the method does condition its output on the goal and starting images as opposed to

learning a preset set of steps necessary to complete a task. The method is also applied

to the problem of walkthrough planning, where the visual output after each action is

shown to demonstrate the path through a task.

Another task made possible by the type of weak supervision available with instructional

videos is visual grounding [63] and reference resolution [62]. Narrations in instructional

videos often refer to objects as ‘it’ or with other pronouns or ambiguous descriptions.

Humans watching the instructional videos can easily use visual context and the infor-

mation from previous narrations to determine what ‘it’ refers to. Reference resolution
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aims to determine which object these unspecific words refer to, while visual grounding

additionally aims to localise the object within the video. Huang et al. [63] create a graph

between detected object bounding boxes and text from the video’s narrations, with ad-

ditional edges between different phrases in the text so linguistic reference resolution can

be performed. The matching between text and bounding boxes within this graph is for-

mulated as a MIL problem where at least one of the detected boxes should correspond

to the text. Since the narrations of instructional videos often correspond to the actions

taking place in the video, words are given a higher probability of being grounded to a

box temporally close to when it is mentioned. The reference aware MIL loss also takes

into account partial correctness by penalising an incorrect object more than the correct

object grounded in an earlier part of the video.

The accompanying text of the narrations contained within instructional videos offers a

type of weak supervision for many tasks within video understanding. These narrations

come for free with instructional videos, however they are weak and noisy as the narrations

are only roughly aligned with the videos and will often contain irrelevant discussion. This

makes instructional videos a convenient but challenging source of data. Instructional

video datasets are also particularly useful as they contain many videos of the same task,

therefore they can be used for higher-level understanding of a task’s structure as well

as lower level understanding of the individual actions and steps. Much of the existing

work in instructional videos has focused on what is happening in the videos. This thesis

instead looks at differences between how and how-well people perform a task. Chapter 6

will explore how particular key steps are performed and will learn this from instructional

videos.

2.2 Ranking and Retrieval

This section will cover work related to this thesis which aims to learn to order items.

In some cases this ordering can be performed by determining a item’s relevance to a

given query, where the relevance of a single item will differ between various queries. For

instance, when using a search engine on the web, items are ordered according to their

relevance to the search term. In other cases the ranking is independent of a query, but

dependent on a given criteria. For instance, when ranking items in terms of quality

rather than relevance. In this thesis, the latter is referred to as ranking and the former

is referred to as retrieval. Section 2.2.1 will cover the various approaches of learning to

rank and the common architectures used to do this. Section 2.2.2 will examine retrieval

in computer vision, with a focus on cross-modal retrieval between video and text.
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2.2.1 Ranking

When learning to rank, the general aim is to learn a function which orders the items

in accordance with their ground-truth ranking. This ground-truth ranking could be a

complete ranking, where all items are ordered relative to each other in a single list.

Alternatively, it could be a set of partial rankings, where the ordering of an item may

only be known in relation to a subset of other items. In computer vision the items

ordered are typically images or videos. There are three common approaches taken when

learning to rank: pointwise, pairwise and listwise.

Pointwise approaches tend to be used when a ground-truth score is available. Methods

can learn to regress to this score from the input image or video, or classify the correct

score if it is categorical. Rankings can then be obtained by ordering items in accordance

with their predicted score. Therefore the goal is to lean a model f(·) to predict the

correct score y from data item x:

f(x) = y (2.3)

A simple way to learn pointwise ranking would be to evaluate the difference between the

predicted score and the ground-truth with Mean Squared Error or some other appropriate

distance function. Crammer and Singer [25] observe that it can be unhelpful to update

a model on all mistakes, even when the predicted score is close to the ground-truth.

Instead they propose to allow intervals in regressing to pointwise scores and only update

when the predicted score is outside of an acceptable margin.

While problems with ground-truth categorical scores can be modelled as classification

problems, this is somewhat counterintuitive as it ignores the relationship between in-

creasing or decreasing scores. However, Li et al. [90] propose to solve this issue by

instead learning class probabilities with a soft classification. The final scoring function is

obtained by combining class probabilities with a monotonically increasing function.

Pointwise ranking offers the benefit that it can take into account how close items’ ground-

truth scores should be, however these ground-truth scores are often not available.

Pairwise ranking is useful when ground-truth scores are not available. Instead prefer-

ences between pairs of items are used to learn an overall ranking function. The can be

done by learning a model f(·) which assigns the higher ranked item xi in a pair (xi, xj)

a higher score:

f(xi) > f(xj) (2.4)
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Herbrich et al. [60] were the first to train a ranking model with pairs. Instead of using

the traditional regression approach, they modelled the ranking problem as an ordinal

regression. This formulation only assumes that there exists an ordering among the

items, meaning each has a rank which can be regressed to instead of a ground-truth

score. With this pairwise training, the goal is to classify whether a pair is correctly

ordered according to this ranking. Herbrich et al. therefore adapt an SVM designed

for classification to classify whether a pair of items is correctly ranked. The proposed

RankSVM also takes into account the target ranks, so while the inclusion of the pairwise

preferences does improve results over classification and metric regression methods it

would still be unsuitable if there are only partial ranks as opposed to a fully known rank

containing all items.

Joachims [75] extends the RankSVM to remove the need for a full ranked list. This

version of the RankSVM became more commonly used for computer vision problems. For

instance, Parikh and Grauman [131] use RankSVM with precomputed image features to

order the strength of particular attributes, such as smiling. They learn a ranking function

per attribute with only a partial ordering of images based on relevant attributes.

Burges et al. were the first to bring pairwise ranking into a deep learning framework

with RankNet [14]. The goal in RankNet is only to minimise the number of inverted

pairs, meaning this approach can cope with partial rankings unlike [60]. To optimise

the ordering of pairs, a binary cross entropy loss is adapted to classify whether a pair

is correctly ordered. This was originally applied to the problem of ranking internet

search queries, but was again adapted to computer vision domain for ranking relative

attributes [173]. In this work, Souri et al. find RankNet to be much more successful

than RankSVM, with around 20% improvement on facial attribute dataset LFW-10 [64].

This demonstrates the importance of backpropagating through the network to learn

fine-grained features. It is possible to incorporate similarly ranked pairs when training

RankNet, although the authors did not find the inclusion of similar pairs helped. This

was confirmed by similar findings from Sculley [159] when using a hinge-based loss.

Pairwise ranking generally obtains competitive results with the pointwise formulation

while not requiring ground-truth scores or ranks. More recent pairwise ranking methods

also offer the advantage that a complete ranking is not necessary in training and the

pairs can instead form several partial rankings. This makes pairwise ranking a valid

option for many different types of tasks.

Listwise ranking is another alternative formulation used to learn a ranking function.

Instead of optimising the ranking locally with orderings of individual ranked pairs, the
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listwise approach uses a global view of the ranking and aims to minimise the loss of the

entire ranked list.

Cao et al. take this approach with ListNet [16]. By transforming the predicted scores

and ground-truth judgements into probability distributions, they are able to measure

the difference between the predicted and the ground-truth lists and back-propagate the

error through the network. The authors find this listwise approach outperforms pairwise

approaches, such as RankSVM and RankNet, and argue that this is due to large numbers

of pairs having a costly training procedure and often not being relevant to the loss.

For many ranking applications, the evaluation metric will often evaluate the correctness

of the full permutation of the list, for instance Spearman’s rank correlation or normalised

discounted cumulative gain (NDCG). The listwise approach offers the advantage that

these evaluation metrics can be optimised for directly, although some approximation is

necessary to make these metrics differentiable. Taylor et al. [178] approximate NDCG

by computing the expected value from a distribution over ranks. This approach is able

to outperform regression methods, such as mean squared error, and pairwise methods,

such as RankNet, on several web search corpora.

Although listwise approaches have promising results, the complexity of the objective

function can make these methods difficult to train [98]. The annotations required for

listwise approaches can also be harder to obtain than pairwise annotations.

Ranking of Images and Videos. The pairwise learning to rank approach is the one

usually adopted for use in computer vision due to its flexibility with annotations. To

learn from pairwise annotations with deep networks, a Siamese framework is used. An

example Siamese network used by Souri et al. [173] to rank relative attributes is depicted

in Figure 2.5. It consists of two identical sub-networks which are fed into a single loss

function. The sub-networks each output a predicted relative score for the corresponding

item and the loss function evaluates whether these predictions order the items in a pair

correctly. The input is a pair of images or videos with a label to indicate their correct

ordering. The two networks share the same network weights and are updated using the

sum of the gradients from the two sub-networks. At testing time a single sub-network

can be used to predict a relative score for each video as shown in Figure 2.5.

An example of the Siamese architecture being adopted for ranking videos is the work of

Yao et al. [208], who use ranking to perform highlight detection. Instead of trying to

sample highlights from long videos, Yao et al. split each video into clips and rank the

clips based on how much of a ‘highlight’ they are. The ‘highlightness’ ranking is then

used to either summarise the videos with a time-lapse, where clips with lower highlight
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Figure 2.5: This Siamese ranking network is used by Souri et al. to rank relative
attributes in images. Each image in a pair is passed through an identical sub-
network, with weights shared across the two networks. Each network outputs a
score from the ranking layer. The ordering of the image via this score can be
evaluated by the chosen loss. In testing, only a single sub-network is needed to
obtain a relative score per image. Figure taken from [173].

values are played faster, or with skimming, where a set time budget of clips are selected

by their highlight score. To perform the ranking, Yao et al. use a Siamese architecture

as pictured in Figure 2.6. The Siamese architecture consists of both an appearance

network which takes RGB frames and a motion network which takes a stack of optical

flow frames. Features from these inputs throughout the duration of the clip are then

averaged to gain an overall clip level feature. The Siamese network weights are learnt

with the following margin ranking loss function:∑
(xi,xj)∈P

max(0, 1− f(xi) + f(xj)) (2.5)

where P is the set of ranked pairs and f(·) is the neural network.

Ranking has also been used for image quality assessment. Liu et al. [99] aim to reduce the

need for ground-truth image quality scores in this problem, and thus propose a solution

which uses images automatically worsened in quality by adding blur and compression

artifacts. While these automatically generated images do not have ground-truth scores,

they are generated such that they will be worse in quality than the original image. Liu et

al. therefore train for image quality assessment with a ranking model. This can then
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Figure 2.6: The Siamese architecture used to train a pairwise deep ranking
model for highlight detection. Features are first extracted from video segments
which are average pooled to obtain an overall video-level feature. This is done
for both the highlight clips and the non-highlight clips. Video-level features are
passed through a Siamese network with shared weights which outputs a score
of ‘highlightness’ for each video. The weights in the Siamese network are learnt
with a margin ranking loss. Figure from [208].

be fine-tuned with a small number of image quality assessment scores to calibrate the

ranking to the desired output scores.

Both highlight detection and image quality assessment are not traditionally formulated as

ranking problems, instead these methods investigate ranking as an alternative approach

where annotations may be easier to obtain. As mentioned previously, ranking relative

attributes is the most common ranking problem in computer vision.

Singh and Lee [168] recognise that not all of the ranked images are relevant to the at-

tribute of interest. Thus they extend the previous work [173] on ranking of relative

attributes to incorporate a spatial transformer [67]. With this, they are able to focus on

a smaller more relevant region of the image when performing the ranking. This approach

sees improvement in the majority of facial attributes tested, particularly attributes such

as dark hair and open mouth which will naturally only be recognisable from a certain

portion of the face. The method shows less improvement on UT-Zap50K [209] which con-

tains product images of shoes, likely as there is little confounding information in product

images so the network is already focussing on features from the relevant regions.
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In conclusion, ranking is often adopted as an approach when scores are difficult to obtain.

Due to the ease in collecting annotations and the popularity of the Siamese architecture,

pairwise ranking is the most commonly used framework when learning to rank. This ap-

proach has been used for a variety of different tasks in computer vision, including ranking

of video snippets, however far fewer works study ranking problems than classification or

regression.

2.2.2 Retrieval

Retrieval is similar to ranking in that the goal is still to order items, however instead of

learning a static ranking function, the aim is to order items by their relevance to a given

query. Another key difference with retrieval is that often only the ordering of the most

relevant items are used to evaluate these methods and lower ranked items are ignored.

This is because in retrieval applications the top-ranked items are the ones which will be

seen; it is unlikely users would actually look past the top N results.

In computer vision, retrieval began as an image-to-image task where the goal is to find

images which depict the same object. A commonly studied image-to-image application is

place recognition. Other image retrieval methods have looked at finer-grained similarities

where success is not as clear cut as the image containing the same object instance.

With the increased use of sites such as Google Images or YouTube, cross-modal retrieval

between vision and language became more common. The goal is to retrieve images or

videos relevant to the text query, although methods often also work for the reverse prob-

lem of retrieving text relevant to an image or video. Much of the focus of this problem

is in finding the most relevant parts of the text query. Some retrieval methods take into

account the full query sentence, potentially with an estimation of the relevant words,

while others know the most relevant types of words for their application in advance.

Video retrieval introduces an additional problem of which video parts are the ones rel-

evant to the query text. As with other video understanding problems (see Section 2.1)

temporally trimmed videos are not always available or applicable to the target problem.

The issue of temporal relevancy differs in a retrieval setting as it is no longer possible to

learn attention based on a video’s class as in [96, 125, 138, 146], instead it is necessary

to use the text to inform which parts of a video are relevant.

This section first discusses image-to-image retrieval and its relation to ranking in Sec-

tion 2.2.2.1, before reviewing cross-modal image-text retrieval in Section 2.2.2.2. Sec-

tion 2.2.2.3 then reviews video retrieval works relevant to this thesis.
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2.2.2.1 Image-to-Image Retrieval

Early works in image retrieval focused on retrieval of the same object instance [127, 141]

or, in a larger scale, landmark retrieval [7, 68, 144, 145]. Given a query image depicting a

certain building or place, the goal is to determine the location by retrieving other images

containing the same building. Methods which tackle this problem have to be robust to

changes in viewpoint, illumination and weather. Many works in this area have focused

on improving the hand-crafted features used to encode the images as it is important to

extract key information which ignores confounding objects, such as people or cars, and

is robust to changes in viewpoint, illumination and season.

Instead of performing learning on top of hand-engineered image descriptors, Arand-

jelovic et al. [5] aim to learn a retrieval function in an end-to-end manner. They propose

NetVLAD which makes vectors of locally aggregated descriptors (VLAD) [69] trainable

and therefore possible to incorporate into a CNN. By learning the important parts of

the image for place recognition, their method is able to focus on elements like build-

ing facade and skyline which are similar to the query image while ignoring distracting

elements such as cars and people.

Works in place recognition typically focus on instance retrieval where items are deemed

relevant if they contain the same exact object or landmark. Other works have focussed on

category based retrieval, where relevance is defined by images containing the same type

of object [56, 177]. Wang et al. [190] instead aim to learn fine-grained image similarity

where the similarity between items of the same category can differ. They do this in a

deep learning framework with an architecture inspired by the pairwise ranking approach.

As shown in Figure 2.7 the architecture is similar to a Siamese network, but with three

streams instead of two. Each training sample is a triplet, consisting of a query image

(xi), a positive image (x+i ) and a negative image (x−i ). The goal is to learn space where

the positive image is closer to the query than the negative image, i.e.

d(f(xi), f(x+i )) < d(f(xi), f(x−i )) (2.6)

for all triplets (xi, x
+
i , x

−
i ) where xi is the query image, x+i and x−i are the positive and

negative images respectively and d is a distance metric. This goal is very similar to the

pairwise ranking objective (Equation 2.4), where the distance between pairs of images

is considered instead of the scores of individual images. Therefore, the hinge-based loss

used for pairwise ranking can also be used for learning retrieval with triplets:

L =
∑

(xi,x
+
i ,x
−
i )

max(0, d(f(xi), f(x+i ))− d(f(xi), f(x−i )) +m) (2.7)
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Figure 2.7: Network architecture of the triplet model for learning fine-grained
image similarity. Figure taken from [190]. Triplets consist of a query xi, positive
x+i and negative x−i . These are each passed through a branch of the network with
weights shared between branches. The output for each branch is an embedded
feature where the triplet loss in the ranking layer encourages the positive to be
closer to the anchor than the negative is.

where m is the desired minimum margin between the two image pairs (xi, x
+
i ) and

(xi, x
−
i ). To aid learning of fine-grained similarities, each branch of this triplet network

(Figure 2.7) is a multi-scale network with three paths, two operating on lower resolution

images.

Since triplets increase cubicly with the number of images, it is often not possible, nor de-

sirable, to train with every possible triplet. Instead, Wang et al. ignore trivial negatives

which already satisfy the loss and focus on sampling more difficult, in-class negatives.

More recent work has looked at different ways of sampling triplets such as semi-hard neg-

atives [128, 132, 157] (i.e. examples which look somewhat similar but are irrelevant to the

query) and easy positives [206] (i.e. positive examples which the model is confident are

relevant), although these sampling methods are only effective with large datasets.

2.2.2.2 Cross-modal Retrieval with Language

The rise of image sharing sites, such as Flickr, caused many more images to be available

on the web. These images would be associated with user created captions or tags which

give some, albeit noisy, supervision as to what the image contains. Works began looking

at automatic image captioning [40, 86, 91, 204, 207], where the aim is to generate a

caption for a given image. Many of image captioning works do this by learning a shared

embedding space where related images and text are close together in the space, therefore

retrieval became an obvious alternate task.
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With increased number of web images, comes an increasing number of classes to divide

these images into, particularly when using image tags [32]. This makes it increasingly

hard to learn an image classifier as the distinction between the classes blur. Image re-

trieval alleviates some of these issues, as a visual-text embedding allows existing semantic

knowledge about the relationship between classes to be utilised. Frome et al. [47] do just

this. They pre-train a visual classification model and a skip-gram language model before

combining the two. In the combination, a transformation is learnt from the output of

the visual model to the semantic embeddings. By utilising semantic information gained

with unannotated text from Wikipedia, the embedding model proposed by Frome et al.

makes more reasonable semantic errors than previous methods and improves retrieval

results for image classes not seen in training.

Cross-modal visual-text embeddings can be trained using a similar triplet loss to the one

used by Wang et al. [190]. Instead, the query consists of text (ti), while the positives

(x+i ) and negatives (x−i ) remain as images and separate functions f and g are used to

embed the image and text respectively:

L =
∑

(ti,x
+
i ,x
−
i )

max(0, d(g(ti), f(x+i ))− d(g(ti), f(x−i )) +m) (2.8)

Gong et al. [51] utilise the increasing amount web images to improve image-text retrieval.

These images have noisy and weak annotations of title, tags or descriptions instead of

the high-quality sentence descriptions normally used. They propose a method based on

Canonical Correlation Analysis (CCA) [179] which is able to transfer information from

a large number of weakly-annotated images to a smaller fully-annotated set. While they

find the title to be the most beneficial type of weak-annotation, the combination of title,

tag and description obtains the best performance. The addition of weakly-supervised

data gives the largest performance increase when fewer fully-annotated images are used,

although there is still a modest improvement with 25,000 fully-annotated images.

Instead of projecting images into a text space as Frome et al. [47] do, Wang et al. [193]

learn a shared image-text space which pre-trained models for both image and text are

projected into. To preserve some structure on this space, Wang et al. introduce addi-

tional triplet losses. In addition to having a text-to-image triplet loss between an image

query and sentence positive and negatives, they also include a image-to-text loss:

L =
∑

(xi,t
+
i ,t
−
i )

max(0, d(f(xi), g(t+i ))− d(f(xi), g(t−i )) +m) (2.9)
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where the triplets (xi, t
+
i , t
−
i ) consist of an image query and positive and negative text

examples. Single modality video-to-video and text-to-text losses are also used, these are

defined similarly to Equation 2.7. The authors find the addition of the image-to-text

loss helpful, even when performing text-to-image retrieval. The structure preserving

single modality losses also give an additional but smaller boost, although the largest

improvement comes from using a non-linear function to project the image and text

features into the shared space.

2.2.2.3 Retrieval in Videos

Video retrieval is most commonly performed in a cross-modal setting between videos

and text (or vice versa), however videos introduce the additional issue of the temporal

dimension where the relevance to the text may not be clear from every frame in the

video. Recent works in video retrieval typically either focus on the most relevant parts

of the text for retrieving a video or focus on finding which parts of the video are most

relevant to a text query.

Text Relevancy. As with cross modal retrieval in images, additional noisy web data

can also improve the text embeddings in cross-modal video retrieval. Otani et al. [129]

help distinguish between fine-grained concepts in text by augmenting the training video

data with image search results corresponding to the query text. They use an RNN

to aggregate the word features from the text, however they treat the full video clip as

relevant and average the frame features.

Torabi et al. [181] investigate the effect of using sequence based models to aggregate

the word features. They demonstrate that using an LSTM to aggregate GloVe features

of individual words is more effective than average pooling when retrieving movie clips.

Torabi et al. also test whether using a learnt weighted average of the video frames is more

successful than a uniform average. This is done through an attention mechanism which

uses the output of the LSTM to weight frames. However, this showed little improvement,

likely because the movie clips used [152] are only a few seconds in length and are trimmed

to contain the video portion relevant to the text description.

Using Parts-of-Speech. Instead of aiming to discover the words in a query most

relevant to retrieving videos, other works focus on specific categories of words i.e. parts-

of-speech. For instance, Xu et al. [205] identify triplets of subjects, verbs and nouns in

the text under the assumption that these words capture the essential semantic meaning

necessary to match videos to text. They learn a dependency tree to compose the elements

within these triplets before projecting them into a joint video-text embedding space.
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Xu et al. find that when retrieving textual descriptions for videos their method is able

to retrieve more specific captions, which are more likely to refer to the correct objects

and actions than the CCA [170] baseline.

Mithun et al. [116] also focus on verbs and nouns. They learn two embedding spaces,

an object-text space and activity-text space which are combined to perform the final

retrieval. For both spaces, the sentence is embedded via a GRU. The input modalities

from the video are separated, based on their applicability to each space. The video

features in the object-text space are learnt with average pooling of RGB features over a

video clip. To learn the video features for the activity-text space, motion features from a

spatio-temporal 3D CNN are fused with a 1D CNN operating on the audio. Separating

the spaces proves much more effective than learning a joint video-text-audio space.

Wray et al. [202] also learn separate spaces focussing on actions and objects, however

these spaces are informed by separate parts of the text as opposed to separate input

modalities. Verbs and nouns are identified from the input caption with part-of-speech

parsing. A separate video-text embedding space is learnt for both nouns and verbs

where both appearance and motion features are used to embed the video in each space.

A final joint video-text embedding space is then learnt from the combination of individual

component spaces. Wray et al. find this approach of first disentangling the embeddings

to be more successful than learning a single video-text embedding either with the entire

caption or only the verb and noun, especially for the task of action recognition.

This work also investigates whether including additional embedding spaces other parts-

of-speech are useful for retrieval in videos, including determiners (e.g . the, every), adjec-

tives (e.g . red, wooden) and adpositions (e.g . on, up). These additional parts-of-speech

had little effect of the results of both video-to-text and text-to-video retrieval, likely

as they are much rarer. For instance, in MSR-VTT [204] there is an average of 0.63

adjectives per caption in comparison to an average of 3.33 nouns per caption. Another

possibility is that these types of words have less of a consistent physical appearance than

actions or objects, thus an embedding space is not an effective way to represent these

parts of speech.

Temporal Relevancy. Different to image retrieval, video retrieval poses the additional

challenge of the temporal domain. Not all information relevant to the text will present

in a single frame, instead certain parts of the video may be more relevant to different

parts of the text. Hendricks et al. [4] propose the problem of localising moments in

video using natural language queries. Queries come from annotator descriptions of dis-

tinct video moments. Similarly to action localisation (see Section 2.1.2), localising with
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language queries goes beyond clips of single actions and requires finding the temporal

bounds of events in untrimmed video. This is a more find-grained problem then action

localisation as the text will refer to specific moments, rather than an entire class of ac-

tions. Additionally, due to words like ‘before’ or ‘after’, global video context is needed

to contextualise the event. Hendricks et al. combine local features, average pooling of

global video features and temporal endpoint features and aim to minimise the squared

distance between the combination of these and the sentence feature.

Mithun et al. [117] since extended moment retrieval with natural language to a weakly-

supervised problem. Given a text query, they aim to learn to retrieve the relevant part of

a video with only video-level labels. To this end, they learn a joint video-text embedding

where the sentence feature is used to guide the embedding of the video feature. The

sentence feature is obtained with a GRU over the features of individual words. Video

segments are then weighted according to their cosine similarity to the query sentence

and the pooled video feature is embedded in the joint video-text space. This approach

obtains comparable results to fully supervised methods for the recall of the top 10 results,

although underperforms when fewer results are retrieved.

As mentioned in Section 2.1.3, instructional videos contain text which corresponds to the

video, albeit with a large amount of noise. Miech et al. [110] introduced the large-scale

HowTo100M dataset and demonstrated its use for pre-training before fine-tuning on a

target task. In the original paper, the authors focused on the scale of the data as a way

to mitigate the effect of the misalignment between the videos and narrations.

In their follow up work, Miech et al. [111]3 present a new loss to address the misalign-

ments and the noise in narrated instructional videos. This approach combines multiple

instance learning (MIL) [33] with noise contrastive estimation (NCE) [55]. As opposed

to the triplet loss, which can have issues with sampling the correct negative, NCE aims

to distinguish the positive example from a distribution formed with multiple negative

examples. This handles the noisiness of instructional videos and avoids the case where

the chosen negative in a triplet loss may actually be a mis-labelled positive. To cope

with the misalignment, Miech et al. add an MIL component to the NCE loss. In the

MIL-NCE loss, the best matching a narration from a set of possible positive narrations

is used. The authors find the optimal size of this set of potential positives to be 3-5,

with performance dropping when a larger set is used. This means the proposed loss is

able to better cope with the slight misalignments often present in instructional videos,

but cannot cope with a large misalignment between the action happening and being

3Work done concurrently with Chapter 6.
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described. Miech et al. use their method to train on the HowTo100M dataset and then

finetune to several downstream tasks in action recognition, text-to-video retrieval and

action localisation. For every task, the MIL-NCE loss is able to outperform pre-training

on HowTo100M with a standard cross-modal triplet loss.

In summary, recent works in video retrieval highlight the importance of learning a good

video embedding feature whether this be through including a large number of (noisy)

examples or by focussing on only the most relevant video parts. Other works have also

shown that focussing certain parts-of-speech more relevant to the target task can improve

results over using the entire caption.

2.2.3 Ranking and Retrieval Conclusion

Ranking and retrieval are highly related problems which aim for a fine-grained under-

standing of the data. The majority of works in video understanding have focussed on

classification tasks where the predicted label is either correct or incorrect. Ranking and

retrieval instead focus on the difference between videos and whether one video is more

relevant, or contains more of the desired property, than another.

While ranking and retrieval do share some similarities, the goal of each, and therefore

the techniques used, are quite different. A key problem in both video ranking and video

retrieval is determining which parts of the video are relevant to the ranking criteria or

retrieval query. The majority of works ignore this issue, or deal with short video clips with

irrelevant parts already removed. While HowTo100M offers a large weakly-supervised

video dataset, due it the noise contained in the dataset, the focus is on pre-training for

downstream tasks on smaller, fully labelled datasets. Therefore, the question of how to

determine the most relevant parts of a video still remains. Chapter 4 focuses on this

problem in the context of ranking for skill determination, while Chapter 6 looks at how

to learn weakly-supervised embeddings for adverb retrieval.

2.3 Skill Determination

Skill determination is the problem of evaluating the performance of a participant in a

particular task. Depending on the scope of the task it can also be referred to as ‘action

quality assessment’. This is not to be confused with image [99, 199] or video [200] quality

assessment, which assess the quality or aesthetics of the footage itself. Works in action

quality assessment have the same goal as skill determination, although the tasks only

consist of a single action and are therefore typically only seconds in length.
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This section focuses on previous efforts in skill determination from video. While other

modalities such as accelerometer data [38, 46, 106, 198, 220] have been used, video is

more widely applicable to different tasks and doesn’t require use of specific tools.

Skill determination can be formulated as either a classification [93, 150, 154, 163, 164,

219, 221], regression [52, 133, 134, 135, 147, 203] or ranking problem [9, 106, 107]. With

classification and regression, the aim is to predict the correct score for the task. Re-

gression can be used when this score is a continuous variable, as with Olympic scores

for diving, while classification can be used for categorical scores. This however relies

on there being a predefined scoring metric for the task. Without a scoring metric, skill

determination can be formulated as a ranking problem where the aim is to correctly

order videos in accordance with an expert’s ranking.

Previous work in skill determination has focussed on tasks in two domains: sports and

surgery. Participants in these tasks have to go through a large amount of training, there-

fore automatic feedback in these areas would vastly reduce the load on instructors. Also,

these tasks tend to have available scoring systems and therefore more easily obtainable

ground-truth. Since the majority of methods focus on these specific domains, most skill

determination approaches are not applicable outside of either sports or surgery. Accord-

ingly, Section 2.3.1 will focus on prior skill determination works in sports, while Sec-

tion 2.3.2 will examine previous works in assessing surgical skill. Section 2.3.3 then goes

on to examine several problems distinct from, but related to skill determination.

2.3.1 Sports

Sports is a natural domain in which to study skill as they require intensive training,

therefore any automated feedback system would be able to alleviate the strain on in-

structors. For many sports, annotations are also easy to obtain as the competitive nature

of sports means teams or individuals are scored and ranked in their performance. The

majority of works in sports focus on individual Olympic sports with ground-truth scores.

These sports, such as diving or gym vault, tend to only take a matter of seconds as they

contain a single, albeit complex, action. Skill assessment on these sports is often referred

to as action quality assessment as the complexity and fluidity of the motions are the main

indications of skill.

Specific Sports. Gordon [52] was the first to examine automated assessment of skill

in videos. In this paper, Gordon aimed to address the question of which type of perfor-

mances were appropriate for automated assessment from videos. He concluded that only

tasks where it was possible to develop a scoring rubric were suitable and that all features
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relevant to the scoring should be “directly observable or explicitly derivable” [52] from

the source video. This mainly constitutes tasks where a certain set of physical actions

need to be executed in a specific manner. As an example of an appropriate task, Gordon

studied the gymnastic vault and proposed to predict the score from the captured trajec-

tory by deducting points for violating specific properties. For instance, a deduction is

given if the performer does not reach an appropriate height or does not land a sufficient

distance away from the vault. These features are specific to the gym vault task and

therefore Gordon posits that further tasks require their own set of rules.

Other more recent works have continued this idea of designing features to assess skill in

a specific task, such as in basketball [9, 77, 143]. Bertasius et al. [9] use footage from

head mounted cameras to assess the performance of individual players in a basketball

game. To assess skill, Bertasius et al. first train a ball detector to locate the position

of the basketball in each frame. The region of the frame around the ball is then used

to classify the detection into several different basketball events, such as shooting the

ball or possession of the ball. Detections of these activities in a 10 second window

are then used to predict the performance of a player using a Gaussian Mixture Model.

To create an overall video score, the clips are aggregated using relevance, however this

relevance is hard-coded as whether any player is shooting the ball. Since there are no

meaningful scores for individual players in basketball, Bertasius et al. instead formulate

the basketball performance assessment problem as a ranking problem with ground-truth

scores from a basketball expert.

Multiple Sports. Pirsiavash et al. [147] were the first to look more generally at skill

assessment in sports and proposed a method applicable to both diving and figure skating.

They use a Discrete Cosine Transform to map a time series of automatically predicted

body poses into the frequency domain. Since diving and figure skating are both Olympic

events, they have readily available scores, thus skill determination in these tasks is posed

as a regression problem. Pirsiavash et al. also examine the applicability of their action

quality assessment method to highlight detection and feedback generation. Highlights

are generated by selecting the segments furthest from the average score of the video.

The feedback generation is specific to the pose estimation framework proposed, as it

estimates the way in which a joint should be moved to maximise the predicted score.

While this work achieved success in determining skill for more than one task, the authors

note several limitations. First, the method is heavily reliant on the predicted pose, if

this prediction is incorrect the predicted score will be unreliable. Second, the authors

remark that they “do not model objects during actions (such as sports balls or tools)

and do not consider physical outcomes (such as splashes)” [147]. Therefore, this method

37



2.3 Skill Determination

is unsuitable for any task where the body pose is not sufficient for assessing skill.

Parmar and Morris [134] aimed to remove the need for body pose in these tasks and

instead proposed a more general method to predict scores for diving, gym vault and

figure skating. This method uses features from C3D [182], a 3D CNN which had shown

success in recognising different sports actions. In this work, Parmar and Morris also note

that not all parts of a video are equally important “a diver may be perfect through the

air but fail to enter the water vertically and make a large splash which is reflected as a

poor overall dive score” [134]. Thus, they propose to use two LSTMs on top of the C3D

features, one to predict the execution score and one for the difficulty score. However,

this is not appropriate for longer tasks like figure skating as LSTMs struggle with longer

sequences. Parmar and Morris also found that using support vector regression (SVR)

on average pooled C3D features vastly outperformed the LSTM approach (0.57 versus

0.74 Spearman’s rank correlation for diving). The results for C3D+SVR were a large im-

provement over the prior, posed-based method of Pirsiavash et al. [147] (0.41 versus 0.74)

and demonstrate the suitability of extracted CNN features for skill determination.

Using Additional Information. Instead of averaging all features uniformly across a

video, Xiang et al. [203] look at specific parts within a task. They identify four com-

ponents of diving: jumping, dropping, entering and ending, and automatically segment

videos into these parts. Xiang et al. train a separate network for each part, as the

features which identify skill may be distinct for each. The output of each network is

then concatenated before regressing to the overall score. This showed an improvement

over the averaged C3D features used by Parmar and Morris [134], however breaking a

task into specific components makes the method more task specific and unable to be

extended to longer tasks, where videos may vary in the actions they contain.

Recently, Parmar and Morris [135] also incorporate additional information to improve

regression to an action quality score. This work uses a multi-task learning approach

where two supplementary tasks are included in addition to action quality assessment.

The first is predicting attributes of the dive, such as the position and the number of

somersaults it contains. The second is generating captions based on the event commen-

tary. These additional tasks are particularly helpful when less training data is available;

the proposed method obtained a +4 improvement in Spearman’s rank correlation when

using 10% of the training data versus a +1 improvement with the full dataset.

Transfer Between Skill Tasks. To better examine the relationship between action

quality assessment on different sporting tasks, Parmar and Morris presented the AQA-

7 dataset [133] consisting of 7 tasks. The tasks are: diving, synchronised diving from
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Figure 2.8: Examples from each of the 7 tasks in the AQA-7 dataset. Figure
taken from [133].

both 3m and 10m platforms, gym vault, ski big air, snowboard big air and trampolin-

ing. Examples of these tasks can be seen in Figure 2.8. Footage comes from televised

coverage of Olympic events. In total the dataset contains 1,189 videos. All tasks take

approximately 5 seconds or less, except trampolining which is around 20 seconds per

video. While the tasks each have different setting and scoring metrics, it is expected

that they will share some common high-level features since all tasks involve jumping and

doing somersaults and twists in the air. An incorrect landing may look very different

between diving (a splash) and gym vaulting (falling over), however the landing is a key

factor in assessing the performance in all of these tasks. Therefore, this dataset is ideal

for examining the relationship between skill in different tasks and how skill models can

be transferred between tasks.

Parmar and Morris [133] investigate this with several basic transfer learning methods.

They use their C3D-LSTM framework [134] to test zero-shot transfer between tasks,

i.e. they train a model on one task and directly apply it to another task without fine-

tuning. In many cases, transferring from one task to another produces near random
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performance. Some related tasks do obtain reasonable performance, for instance when

transferring from synchronised diving 10m to synchronised diving 3m the Spearman’s

rank correlation is 0.44, although the same is not true for the reverse transfer. There are

also some unpredictable positive transfers, such as skiing to diving. This highlights that

more work is needed to understand the skill-relevant features and their applicability to

other tasks. Parmar and Morris, also test multi-task learning, finding that learning the

six shorter tasks together (everything except trampolining) is helpful in most cases.

In summary, the majority of work in skill determination for sports has followed Gordon’s

notion [52] of appropriate tasks being those with scoring metrics, where skill is the quality

of movement in a predefined set of motions. Most tasks studied are only seconds in length

and each part of the video is assumed to have equal importance, leaving the possibility

of assessing skill in longer, more complex tasks an open question.

2.3.2 Surgery

Videos in the surgical domain are typically minutes in length, therefore skill determi-

nation work in this area has been more focussed on the temporal aspect of the video.

While videos of surgical tasks are generally used to obtain ground-truth, many works

instead use accelerometer data to predict skill [38, 46, 106, 107, 150, 154, 198, 220]. This

was particularly true for earlier work [106, 150, 154], however more recent methods have

begun using video [10, 74, 163, 221] as this data can be easier to capture.

Works which aim to determine skill in surgical tasks can generally be divided into two

categories, those which use global motion features [10, 106, 107, 163, 220, 221] and those

which first split the task into a sequence of different actions [93, 150, 154].

Sequences of Actions. Rosen et al. [154] take the latter approach, building hidden

markov models (HMMs) to describe the transition between surgical actions (surgemes)

for both experts and novices from accelerometer data. The likelihood of a given sequence

of actions belonging to either the expert or novice categories can then be used to identify

skill level. Reiley and Hager [150] extend this approach to individual actions. In this

work, each trial of a suturing task is first parsed into a sequence of surgemes. For each of

the 8 surgemes, the authors train ‘beginner’, ‘intermediate’ and ‘expert’ HMMs. After

calculating the most likely model for each surgeme, majority voting is used to classify

the sequence into the appropriate skill level.

One disadvantage of this approach is that novices will perform the surgemes in a different

way to experts, making it difficult to parse lower skill trials into sequences of surgemes.

Lin and Hager [93] aim to improve the segmentation into surgemes using video data,
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instead of accelerometer data. They find using other contextual clues from video data

to be much more robust to variability in skill level and obtain a large improvement in

the result of skill classification when one skill category is absent from training.

Surgery-Specific Metrics. However, these approaches still require knowledge of the

type (or at least number) of possible actions within a task. In order to create a more

general approach across different types of laparoscopic (keyhole) surgeries, Malpani et

al. [106] use global task features. These include the time of completion, the total path

length traversed by the surgical tools and the area swept by the instrument wrist. This

work was later extended by Malpani et al. [107] to include further features such as the

number of times the gripper was closed and the number of peaks in magnitude of the

instrument tip’s velocity. In these works Malpani et al. also moved away from the coarse

grained categorisation used by prior works, instead opting for a ranking approach. By

using a RankSVM to compare the global features across different trials, Malpani et al.

were able to accurately rank skill for both suturing and knot tying tasks.

More recently, this type of approach has been brought into the deep learning era by using

region based object detection methods to identify the locations of tools [74]. From tool

bounding boxes, the tool usage patterns and economy of motion can be calculated with

metrics such as the total time each instrument is used and the distance travelled.

Crowd-sourced Annotations. The works from Malpani et al. [106, 107] were also the

first to examine crowd-sourcing of skill annotations. As well as obtaining skill ranking

annotations from expert surgeons, annotations were also crowd-sourced4. Malpani et

al. [107] found that the inter-reliability between the crowd was not too disimilar to

the inter-reliability of experts (0.81 versus 0.88 Fleiss kappa). Furthermore, when taking

expert preferences as ground-truth, pooled crowd preferences were at least 83% accurate.

This demonstrated that crowd-sourcing is a viable way to collect skill annotations, even

for surgery tasks where it seems prior knowledge would be necessary.

Motion Features. More recent works have aimed to obtain motion features directly

from video data and make these global features more applicable across different types

of surgery. These more recent works also aim to assess skill by predicting OSATS

scores [108] instead of categorising experience or ranking. OSATS criteria are mea-

sured on a 1-5 point scale and cover various aspects of surgical skill, such as respect for

tissue and flow of operation.

Bettadapura et al. [10] propose augmented bag of visual words. This operates on pre-

4from undergraduate students outside of medicine
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extracted Harris3D and HoF features and uses detected temporal events to capture the

time and co-occurence of visual words. As well as being able to recognise different

activities, the authors show the proposed method can correctly categorise videos into

different OSATS scores with > 60% accuracy across the different criteria.

Since this work, the majority of effort in surgical skill assessment has gone towards im-

proving the features used to model the motion dynamics across a video. Sharma et

al. [164] proposed predicting skill with motion textures, later extended to sequential

motion textures [163]. These are computed from kernel matrices which encode the simi-

larity of clustered STIP, HoG and HoF features between two frames. The authors found

motion texture features to be successful for assessing skill as motion existed in nearly

every frames of the novice videos, while experts performed far fewer motions and did so

in a more deliberate manner.

Zia et al. [220] improved upon this method by using the Discrete Cosine Transform

and Discrete Fourier Transform on the same STIP, HoG and HoF features. This gave

a large increase in classification of OSATS criteria for both suturing and knot tying

and is computationally much less expensive than sequential motion textures. However,

the authors note that the method is “designed for basic repetitive types of surgical

motions” [220] and that other feature types not dependent on the periodicity should be

used for non-repetitive tasks.

Building on this work, Zia et al. [221] used approximate entropy in the time series to

assess skill and proposed cross approximate entropy to measure the asynchrony between

two time series, i.e. the two hands of a surgeon. While the results of these methods were

comparable to prior approaches when using accelerometer data, they vastly improved

the performance with extracted video features. Again, since approximate entropy is a

measure of regularity, this method relies on the repetitive nature of surgical tasks.

JIGSAWS Dataset. Due to the nature of surgical tasks, many of the above approaches

do not use publicly available data, or if they do it is very limited in scale. The JHU-ISI

Gesutre and Skill Assessment Working Set (JIGSAWS) dataset works towards solving

this issue. This dataset contains three tasks performed using the da Vinci tele-robotic

surgical system [54]:

• Knot-Tying: a subject has to tie two loop knots with suturing thread around a

flexible tube.

• Needle-Passing: a subject first picks up the needle and then passes it from

right to left through four small metal hoops. The hoops are attached to a flexible

material a small height above the surface.
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Figure 2.9: Examples videos from the Knot-Tying, Needle-Passing and Sutur-
ing tasks in the JIGSAWS dataset.

• Suturing: after picking up the needle, the subject has to stitch around an ‘inci-

sion’, denoted by a vertical pink line. To do this the needle must be passed through

the guide dot on the right hand side and exit through the guide dot on the left.

This is then repeated three more times.

Examples of each task can be seen in Figure 2.9. All three tasks are performed by

eight participants, with each participant repeating the tasks five times. As some data

was corrupted during the collection of the dataset, there are 36 trials available for Knot-

Tying, 28 for Needle-Passing and 39 for Suturing. The performances of these tasks range

from 30 seconds to 3 minutes. Knot Tying is generally the shortest task, with an average

of 57 seconds per trial, while Needling-Passing and Suturing have averages of 108 and

112 seconds respectively. Both accelerometer data and 640×480 stereo video data are

available for use.

The dataset is annotated with surgical gestures, the user’s level of past experience5 and

OSATS criteria [108] modified to exclude irrelevant factors such as the use of assistants.

To obtain the OSATS annotations, a surgeon with extensive experience in laparoscopic

surgery watched each video. The JIGSAWS dataset uses six criteria, all marked in

the range from 1-5: respect for tissue, suture/needle handling, time and motion, flow of

operation, overall performance and quality of the final product. These are then combined

to obtain a global score for each video.

In summary, unlike skill assessment in sports tasks, methods dealing with surgical tasks

have to cope with long videos. Much of the research in this area has examined how

to deal with this temporal aspect, either through modelling the progression of the task

through different surgical actions [93, 150, 154] or extracting global motion features to

5‘Beginner’: < 10 hours, ‘Intermediate’: > 10 and < 100, ‘Expert’: > 100
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describe the full task [10, 106, 107, 163, 220, 221]. Both of these types of methods rely

heavily on the constrained and repetitive nature of surgical tasks. Although recent work

in motion features have made them more automated and less task-specific, these methods

are still unsuitable for non-surgical tasks. This thesis explores skill-determination in a

variety of daily-living tasks where the videos are minutes in length.

2.3.3 Tasks Adjacent to Skill Assessment

While work in skill determination has been focussed in specific domains, there have been

more generalisable methods proposed for problems related to skill determination. This

section will describe these problems, prominent works which tackle these problems and

their relationship to skill determination.

Action Completion. This is the task of identifying whether an action has been suc-

cessfully achieved. While many works have aimed to identify what an action is [18, 70,

139, 146, 166, 182, 189, 194], Heidarivincheh et al. [58] were the first to detect whether

an action has been finished successfully. In this work, the authors propose a supervised

approach to build a completion model per action using a set of human pose features. This

work was later extended in [59], where Heidarivincheh et al. use a convolutional RNN

with frame-level voting to identify the moment at which the action is completed.

The problem of action completion is similar to skill determination in that it aims to

determine whether a person has been successful at the task. Similar to action quality as-

sessment in sports, action completion targets shorter videos, generally seconds in length,

as opposed to the longer videos addressed in skill determination from surgical videos.

However, action completion only gives a binary assessment of whether the person has

succeeded or failed at completing the action. On the other hand, skill determination

aims to separate this further and assess how-well has the task be completed.

Adverbs. How an action has been performed can be discovered by recognising the ad-

verbs applicable to the action in a video. While video captioning datasets [81, 213] do

contain adverbs, no prior work using these datasets aims to model or recognise these

adverbs. The only prior work to utilise adverbs is that of Pan et al. [130]. This work

presents a multi-stream model which fuses RGB, optical flow, pose and expression in-

formation to recognise an action and the relevant adverb. In addition to this, a spatial

attention mechanism is trained with human bounding boxes to focus on the image re-

gions where the action takes place. This was tested on a variety of different actions and

adverbs, including ‘smoke triumphantly’, ‘run freely’ and ‘sword exercise clumsily’. The

authors found that the problems of action recognition and adverb recognition were not
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highly related and did not benefit from sharing the same model.

While skill determination aims to assess ‘how-well’ a task or action is performed, adverbs

more generally describe ‘how’ it is done. Some adverbs are directly related to skill such

as ‘clumsily’ and ‘expertly’ and thus recognising these adverbs works towards assessing

skill. Others could be related to the skill of a specific task, for instance it is ideal if

surgery is done ‘carefully’ and ‘quickly’, but less important that it be done ‘happily’.

Chapter 6 aims to link adverbs and skill through the use of instructional videos.

Object Attributes. Related to adverbs of actions is the analogous task of learning

attributes (or adjectives) of objects. Learning adjectives for nouns has been investigated

in the context of recognising object-attribute pairs [11, 23, 39, 66, 87, 115, 123, 124, 131,

197] from images.

A standard approach of early work in this area was to train discriminative attribute clas-

sifiers from a pool of images across different object categories [11, 39, 87, 131]. Farhadi et

al. [39] use logistic regression to select a subset of texture descriptors, HoG descriptors,

edge orientations and colour descriptors which can generalise well across different ob-

jects and contexts. The idea being that if the presence of an attribute is annotated in

enough different contexts, the features selected will be able to distinguish from common

co-occurring attributes.

However, the appearance of attributes can vastly differ depending on the object the

attribute applies to. Take the example ‘old’, while they could share some properties an

‘old bike’ will have a very different appearance to an ‘old laptop’. Wang et al. [197]

tackle this problem with a model which captures both the object-dependent attributes

and the object-independent attributes. This is done with a Bayesian network which

learns connections between pairs of attributes either directly (independent) or through

objects (dependent).

Both Chen and Grauman [23] and Misra et al. [115] work on the problem of contextuality

of attributes by aiming to classify unseen object-attribute pairs. Chen and Grauman [23]

formulate this as a transfer learning problem to recognise unseen object-attribute com-

positions. Their proposed method discovers analogous relationships based on previously

seen objects and attributes allowing it to naturally discover where transfer is possible.

Misra et al. [115] instead learn a classifier for every attribute and object independently.

They then learn an additional network which composes separate object and attributes

classifiers for novel combinations.

Instead of using classifiers to recognise attributes, Nagarajan and Grauman [123] model

attributes as a transformation of an object’s embedding (see Figure 2.10). The proposed
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Figure 2.10: Nagarajan and Grauman [123] propose a factorised model for
recognising object-attribute pairs. Attributes are operators which modify the
embedding of an object vector. This representation enables disentangling of the
object and attribute and allows attributes to be composed with previously unseen
objects. Figure from [123].

method uses GloVe vectors [140] to represent objects and learns to represent attributes

via a linear transformation matrix in the embedding space. With this, Nagarajan and

Grauman can disentangle objects and attributes. Their method can generalise to unseen

pairs by learning to embed an image close to the relevant object modified by any learnt

attributes. The method presented in Chapter 6 is inspired by this approach. This paper

also proposed several regularisers to help learn good operators, inspired by linguistic

properties of adjectives. The regularisers ensure that the operators are invertible, com-

mutative, undo the effect of their antonym and that an embedded image can be correctly

classified as containing the relevant attribute and object.

As with adverbs, correctly identifying the attributes of an object could be used for skill

determination. In some tasks, certain properties of intermediate or final results are

required and their presence can indicate success in the task. For instance, if the egg

whites are not whisked until they form ‘stiff’ peaks it is likely the meringue will not

bake correctly. While these methods could be applied to skill determination, this thesis

instead focuses specifically on the temporal domain and explores how these methods can

be applied to the analogous task of identifying adverbs for actions in Chapter 6.
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Chapter 3
Learning to Determine Skill from Video

This chapter explores skill determination for daily-living tasks, such as using chopsticks

or rolling pizza dough. The aim is to go beyond the domains of sports and surgery,

where automatic skill assessment is typically studied, and be able to determine skill

for a variety of different tasks. This would allow automated feedback or could be used

identify suitable videos to learn from.

Extending the domain of skill determination to include daily-living tasks is challenging.

The nature of sports means there are predefined criteria to measure a person’s or team’s

success. While in surgery, the severity of the problem and need for intensive training has

led to scoring metrics being defined across different surgical tasks. However, in daily-

living tasks such metrics are not available, nor would they be common across the diverse

range of tasks encompassed by ‘daily-living’.

Not only does this provide challenge in the annotation and formulation of the skill deter-

mination problem for daily-living tasks, but it means a method cannot incorporate prior

task knowledge. For instance, in a method specifically designed to score videos of diving,

body pose is an important feature and can be used explicitly [147]. In surgery, specific

features, such as the trajectory of the needle, can be used to estimate the skill [106]. No

such common features are present across the diverse range of daily-living tasks.

As the problem is to determine skill within a breadth of tasks, it is therefore also

paramount to determine skill with relatively limited data per task. Gathering a large

amount of data for each task would be impractical and would limit the amount of tasks

where skill can be automatically assessed.

These challenges are tackled in this chapter. Specifically, Section 3.1 discusses the ap-

proach used to determine skill in daily-living tasks. Section 3.2 describes the collection
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and annotation of the EPIC-Skills dataset for skill determination in tasks ranging from

drawing to rolling pizza dough. In Section 3.3, naive metrics, such as time of completion,

are discussed and the need to determine skill from video is explained. The method to de-

termine skill from videos is then presented in Section 3.4 and experiments are conducted

in Section 3.5.

3.1 Ranking Skill from Video

Automatic skill assessment from video would allow the wealth of online videos capturing

daily tasks, such as crafts and cooking to be explored for training humans and intelligent

agents. It could allow automated feedback of a person’s performance in the task as

well as enabling improved instruction, by helping users select the better videos to learn

from.

Previous methods have focussed on determining skill, or assessing the quality of actions,

in sports or surgical tasks. As these types of tasks have readily available scoring metrics,

existing approaches often regress to this score [147, 163, 219]. Alternatively, other prior

works take a coarse approach, instead categorising participants into ‘novice’ and ‘expert’

categories [48, 220]. Chapter 2 gives a full overview of these approaches. This thesis aims

for a more fine-grained understanding of skill than simply classifying people into expert

and novice, however daily-living tasks do not have existing scoring systems. While it

would be possible to define scoring metrics for daily-living tasks, this would have to be

done per task and designing such metrics would be difficult.

Instead, the assumption is made that if human observers consistently label one video

as displaying higher skill than another, there is enough information in the visual signal

to automate that decision. Examples of the types of annotations humans could easily

provide are shown in Figure 3.1 (left), where videos could either be similar in the skill

they display (≈), or one video could be obviously better than another (>).

This chapter proposes to determine skill with a pairwise deep ranking model, which

characterises the difference in skill displayed between a pair of videos, where one is

ranked higher than the other by annotators. The method uses a Siamese architecture

where each side of the Siamese network is a two-stream (spatial and temporal) CNN.

The Siamese architecture is trained using a novel ranking loss function which considers

the extent of the task within the video, and includes pairs of videos indistinguishable in

terms of skill. By assigning videos a relative skill score for the given task, it is possible

to learn to predict an overall skill ranking from pairwise annotations.
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Figure 3.1: Determining skill in videos of daily tasks. Who’s Better (Left):
pairwise decisions between videos of the same tasks, performed with varying or
comparable levels of skill. Who’s Best? (Right): ranking learned per task from
the sets of pairwise decisions.

3.2 EPIC Skills Dataset

As outlined in Section 3.1, the aim is to be able to rank skill for a variety of daily-living

tasks. The existing skill datasets (outlined in Chapter 2) are either in the domain or

sports or surgery and are therefore not suitable for this purpose. Datasets to determine

whether people have successfully completed an action do exist [59] (see Chapter 2 for

further detail), however skill determination focuses on fine-grainer differences rather than

making binary decisions about success. Therefore, a new skill determination dataset is

necessary. The collection and annotation of this dataset is described in Section 3.2.1 and

Section 3.2.2 respectively.

3.2.1 Data Collection

A search was first carried out to ascertain whether any existing video datasets can be re-

purposed and annotated for skill determination. This would save the time and resources

needed for data collection and allow future works to explore the use of existing anno-

tations for determining skill. For example, annotations of temporal action boundaries

could be used to exclude actions irrelevant to skill or allow overall skill to be predicted

from the assessment of individual actions. The following datasets were explored for po-

tential tasks: 50 Salads [137], Breakfast [85], BEOID [29], CMU-MMAC [31], GTEA

Gaze+ [41] and MPII Cooking [153], as they contain multiple participants performing

the same task. However, these datasets were mainly created for the purpose of action

or activity recognition and therefore the activities are relatively easy to complete. Thus,

the majority of videos within a task have little variation in skill. CMU-MMAC did show

variation within some tasks.
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3.2.1.1 CMU-MMAC

The Carnegie Mellon University Multi-Modal Activity dataset (CMU-MMAC) is an ego-

centric kitchen-based dataset. In CMU-MMAC, 39 participants complete five different

food preparation tasks in the same kitchen. Participants follow the same recipe and

have access to the same tools and ingredients, but may differ in the sequence of actions

used to complete the tasks. The five tasks are preparing brownies, pizza, a sandwich, a

salad or scrambled eggs. Video is captured by five cameras, one head-mounted and the

remaining four stationary. Audio, motion capture, accelerometer and gyroscope data are

also recorded.

Through observation, it was determined that the pizza making task showed the greatest

variety in terms of skill. This activity generally contains the following steps: collect

ingredients, open can of pizza dough, take dough out of can, unroll dough, neaten edges

of dough, add tomato sauce, spread tomato sauce, grate cheese, cut sausage, add sausage

to pizza, put pizza in oven and put away ingredients. Neither collecting the ingredients

nor adding toppings show variety in terms of skill, therefore these steps are excluded from

the videos. This leaves the opening and rolling of the pizza dough which is subsequently

referred to as the Dough Rolling task. The recording from the head-mounted camera is

used, as this contains the best view of the task. Once the egocentric videos are trimmed

to contain only the steps of interest, there are 33 videos1 with an average duration of 1

minute 42 seconds and standard deviation of 29 seconds.

3.2.1.2 Data Recording

Since the search in existing datasets only yielded one task, it was necessary to record

further tasks. Drawing and Chopstick Using were selected as suitable tasks. These tasks

displayed variety in terms of skill within the available participants and are significantly

different to each other and the Dough Rolling task.

Drawing. Participants were asked to draw a copy of a reference image. Multiple

variations of the Drawing tasks were created to allow future work in sharing skill between

similar tasks. In the first, participants were asked to draw a cartoon image of Sonic the

Hedgehog. In the other variation, they were asked to copy a grey-scale photograph of a

hand. Similarly to the Surgery tasks, each participant repeated the task five times. This

gives a large variation in skill as participants generally improved between runs. For each

Drawing task, four participants were recorded, resulting in 40 videos (20 per task).

1Despite CMU-MMAC containing 39 participants, only 33 videos are available for the pizza making
activity.
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Figure 3.2: Example Videos from Dough Rolling, Drawing and Chopstick Using

Chopstick Using. In this task, participants were challenged to pick-up and move coffee

beans using chopsticks. The set-up consists of two pots, one containing four coffee beans.

The participants’ goal was to move those four beans to the other, empty, pot. The weight

and rounded nature of the coffee beans meant even highly-skilled participants found this

task challenging. Participants were limited to one minute per trial in case they were

unable to complete the task. As in Drawing, each participant completed five trials of

the task. With eight participants, this resulted in 40 videos of Chopstick Using.

Both tasks were captured using a stationary and head-mounted camera at 60fps with

a resolution of 1920×1080 pixels. The rest of this thesis uses the stationary camera

recording, which is mounted to have a bird’s eye view of the task, just above head

height. An egocentric viewpoint can often provide a more insightful view of the task, as it

captures the participant’s viewpoint, however the participants’ attention did not always

follow their hands. For example, several participants focused solely on the reference

image in Drawing2. Examples of the videos obtained for these tasks, and the Dough

Rolling task from CMU-MMAC, can be seen in Figure 3.2.

The method proposed in this chapter is also tested on the Surgery tasks from the JIG-

SAWS dataset [48] due to the similarity in length and complexity and to further test the

generality of the proposed approach.

2Results comparing the stationary and egocentric viewpoints are published at https://www.

eyewear-computing.org/EPIC_ICCV17/short_papers/EPIC17_id17.pdf
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Figure 3.3: The interface used to collect pairwise rankings.

3.2.2 Data Annotation

The Surgery tasks from the JIGSAWS dataset have existing skill scores from a surgical

expert (as outlined in Chapter 2). However, annotations needed to be collected for the

Dough Rolling, Drawing and Chopstick Using tasks.

As explained in Chapter 2, pairwise comparisons have often been used to provide effective

assessments when obtaining an absolute score is difficult. Malpani et al. [107] showed

that it is possible to crowd-source this type of annotation for skill in surgery where non-

experts were able to rank tasks with reasonable accuracy (see Chapter 2). Since it is

hard to obtain experts for daily-living tasks, a similar approach was followed to annotate

the Dough Rolling, Drawing and Chopstick Using tasks with crowd-sourcing.

Annotations were obtained through Amazon Mechanical Turk (AMT). This is a plat-

form which allows people around the world to complete short tasks, known as Human

Intelligence Tasks (HITs). AMT workers were asked to watch pairs of videos from the

same task simultaneously and select the video displaying the higher level of skill. An-

notators were asked for strict preferences per pair. Each worker was presented with five

video pairs per HIT from the same task. This allows workers to become familiar with the

task, and the skill variation within the task, before submitting their rankings. Figure 3.3

shows the pairwise ranking interface.
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Since the process is crowd-sourced, it is important to ensure the quality of the anno-

tations. Several filtering techniques are used, such as ensuring the workers have prior

experience with AMT (> 500 HITs completed), have a reasonable approval rating for

other annotating tasks (> 95%) and do not complete the HIT in significantly less time

than it would take to watch the pairs of videos. In addition, one video pair in the HIT

is a quality control pair with an obvious difference in skill between videos.

To remove subjectivity in preference, and account for cases where a pair of videos may

contain a similar level of skill, the consensus of the crowd is used. Each video pair is

annotated by four workers and only pairs of videos where all annotators agree on the

pair’s ordering are taken as ground-truth annotations. This set of video pairs are thus

referred to as the consistent pairs.

It is important to note that pairs in the set of consistent pairs will not necessarily create

a complete ranking of the videos. Many pairs will not have a consistent ranking agreed

on by the annotators, either due to noise from the annotation process or pairs being

similar in terms of skill. Furthermore, it may not be possible to infer the ranking of

these pairs from the set of consistent pairs. An example of this partial ranking is shown

in Figure 3.4 for the Chopstick Using task. The method proposed in Section 3.4 will

take this into account and will only require ranked pairs of videos.

The consistent pairs are further checked for any discrepancies, by testing for triangular

inconsistencies. Assume there are three videos xi, xj and xk with annotations indicating

xi shows higher skill than xj (xi > xj) and xj shows higher skill than xk (xj > xk).

This gives a ranking xi > xj > xk. From this ranking it can be inferred that xi > xk.

However, if the set of pairs was {xi > xj, xj > xk, xk > xi} there would be no overall

ranking. These triangular inconsistencies are discovered by creating a directed graph

where nodes are the set of videos in the task and edges are the set of ranked pairs, i.e.

the edge xi → xj is created if video xi had been annotated as having higher skill than

video xj. Such a graph is shown in Figure 3.4 for the Chopstick Using task. Cycles in this

graph would indicate a triangular inconsistency. Only a single triangular inconsistency

was found in the annotations. This was in the Dough Rolling task. The pairs forming

the inconsistency were excluded from the set of consistent pairs.

For the Surgery tasks within JIGSAWS, numerical scores are converted to pairwise rank-

ing annotations to match the collected annotations for EPIC-Skills. This allows the same

method and evaluation to be used for all tasks.

It is also interesting to obtain pairs which display a similar level of skill. For the Surgery

tasks, this is simple, pairs with the same numerical score are considered as the set of
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Figure 3.4: A graph visualising the annotations for the Chopstick Using task.
Videos are nodes and edges indicate a pairwise annotation e.g. D2→ D4 indicates
that video D2 has been annotated as having higher skill than video D43. Edges
which can be represented as a path through other nodes are removed for clarity.

similar pairs. For the tasks annotated through AMT, the set of similar pairs is not

just all the pairs outside the set of consistent pairs, i.e. the inconsistent pairs, as these

may be noisy. To find the set of similar pairs, the directed graph introduced above is

used. Separation between a pair of videos is defined as the difference in the length of

the longest walk from any source node in the graph. A source node is a video which

is not ranked lower than any other video. For instance, in Figure 3.4 D2 is the source

node and the longest walk to H1 is 7. Pairs in the set of inconsistent pairs with a

separation of 0 or 1 are taken as similar pairs. In the Chopstick Using task, H2 and H4

would be considered similar in skill, as would H2 and B3 (see Figure 3.4). Annotators

are not asked to indicate pairs they believe are similar, as this would discourage them

from distinguishing between closely ranked pairs and would result is a less fine-grained

ranking.

Statistics on the tasks, and the consistent and similar pairs found for each, are available

in Table 3.1. The Surgery tasks have a high number of consistent pairs as these pairs come

from the scores of a single expert, available with the JIGSAWS dataset. Therefore, pairs

are only excluded from the consistent pairs when two videos have the same score. For the

other tasks, the judgements from multiple AMT workers are used. Dough Rolling has

3The letter indicates the participant which is followed by the trial number.
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Task
Average Num. Maximum % Consistent % Similar Total

Length (s) Videos Pairs Pairs Pairs Pairs

Surgery (Knot Tying) 57± 20 36 630 95% 5% 100%

Surgery (Needle Passing) 108± 24 28 378 96% 4% 100%

Surgery (Suturing) 112± 43 39 701 95% 5% 100%

Dough Rolling 102± 29 33 528 34% 18% 52%

Drawing (Sonic) 86± 25 20 190 62% 37% 99%

Drawing (Hand) 117± 58 20 190 68% 26% 94%

Chopstick Using 46± 17 40 780 69% 10% 79%

Table 3.1: The number of videos and number of potential pairs (n(n−1)/2) for
each task, alongside the percentage of consistent pairs and similar pairs obtained
through the annotation process.

the lowest percentage of consistent pairs with annotators finding these videos harder to

separate. The annotators found the Drawing and Chopstick Using tasks less ambiguous,

with 60-70% of pairs ranked consistently and many of the inconsistent pairs found to be

similar.

3.3 Naive Measures of Skill

This chapter proposes to rank skill from videos of people performing a task. This section

considers the suitability of different forms of data to ranking skill, namely past experi-

ence, time of completion and the end result. Each of these are discussed in turn and the

need to rank skill from video is motivated.

3.3.1 Experience

It could be argued that the amount of past experience a person has will indicate how

skilled that person is at a task. While experience in a task will be heavily related to skill,

there are more factors. People will improve at different rates and some people will be

naturally much better than others or can draw on experience from other tasks. Experts

may also occasionally make mistakes and thus could have a low-scoring trial.

This is evident in the Surgery tasks from the JIGSAWS dataset [48]. As explained in

Chapter 2, this dataset contains eight participants each performing Knot Tying, Needle

Passing and Suturing tasks five times using the da Vinci surgical system [54]. These

participants are classified into ‘Novice’, ‘Intermediate’ and ‘Expert’ categories based on
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Knot Tying Needle Passing Suturing

ρ 0.61 -0.29 0.10

Table 3.2: Spearman’s rank correlation between past experience category and
OSATS skill score for the tasks in the JIGSAWS dataset.

their previous experience4 with the system. The dataset also contains skill scores from

an expert using the OSATS criteria [108].

The Spearman’s rank correlation between these scores and the past experience of partic-

ipants is shown in Table 3.2. This gives a score between 1 and -1, with 1 being perfect

positive correlation, -1 perfect negative correlation and 0 no correlation. For Knot Tying

the correlation is reasonably high, with intermediates and experts outperforming the ma-

jority of novices. However, more information is evidently needed even in the Knot Tying

task, as intermediates tend to outperform experts and the highest score is obtained by a

novice. For Suturing and Needle Passing, past experience has a much lower correlation

with score and is even negatively correlated for Needle Passing.

To obtain finer-grained categorisation between performances from the same participant,

it could be assumed that they improve between consecutive trials. This also utilises past

experience, but only the recent experience of the exact task being performed. In the

Surgery tasks, as well as in the Drawing and Chopstick Using tasks, each participant

repeats the task five times. The correlations between each participant’s trial numbers

and skill ranking are shown for each of these tasks in Figure 3.5. For the Surgery tasks,

Spearman’s rank correlation is used as above, with 0 indicating no correlation. Since

the tasks in EPIC-Skills have pairwise annotations and not a complete ranking, the

relationship between trial number and skill is measured by calculating the number of

human annotated pairs correctly classified when assuming a larger trial number means

the participant will demonstrate higher skill. Note that with pairwise accuracy, random

performance is 50%, with < 50% showing a negative correlation and > 50% showing a

positive correlation.

From Figure 3.5 it is clear that while many participants do increase in skill across trials,

many do not. All tasks have at least one participant with little correlation between trial

number and skill ranking. In some tasks, such as Chopstick Using, some participants

have a strong negative correlation, meaning their performance decreased over the trials.

While in a task such as Drawing participants explore different ways to complete the task,

4Novices had 1-10 hours experience, Intermediates 10-100 hours and Experts had more than 100
hours.
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Suturing Hand 
Drawing

Chopstick
Using

Sonic
Drawing

Needle
Passing

Knot
Tying

Figure 3.5: Relationship between skill and trial number per participant. Left:
Spearman’s rank correlation between skill score and trial number for each par-
ticipant in the Surgery tasks. Right: Average pairwise accuracy per participant
in the Drawing and Chopstick Using tasks when assuming a later trial means
the participant is more skilled.

this exploration does not tend to occur in Chopstick Using. Instead, participants grip

the chopsticks in the same way in each trial causing their performance to worsen as their

hand becomes fatigued.

In Drawing, novices tend to improve in skill across the trials. This is not true for the

other tasks. Some novices improve in the Surgery tasks, but others do not. On the other

hand, all experts have a positive correlation between their OSATS skill score and trial

number. This is likely because the experts only need a few trials to remember how to

use the tools effectively, while novices are still discovering how to control the tools.

In summary, measures of both overall experience and immediate past experience do not

correlate with annotations of skill for many tasks. Therefore, past experience is not a

good indicator for the skill shown in a particular trial.

3.3.2 Time of Completion

Time of completion could be used as a naive measure of skill. However, someone who is

able to complete a task quicker is not always better at the task. When two participants

obtain the same result, the quicker participant will often be considered better at the

task, however the speed is less important if one outcome is worse. Furthermore, for some

tasks, speed will be much less relevant, or even inversely correlated. The correlation

between time of completion and skill ranking is shown for all tasks in Table 3.3. As

before, Spearman’s rank correlation is used to measure the relationship between time of

completion and skill score for the Surgery task, while pairwise accuracy is used for the

tasks in EPIC-Skills.
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Knot Needle
Suturing

Tying Passing

ρ 0.724 0.211 0.342

Dough Sonic Hand Chopstick

Rolling Drawing Drawing Using

Acc. (%) 85.6 30.5 15.5 96.5

Table 3.3: Relationship between time of completion and skill. Left: Spearman’s
rank correlation (ρ) between the skill scores and the time taken to complete the
Surgery tasks. Right: Percentage of annotated skill pairs correctly ranked when
assuming faster means more skilled.

Table 3.3 shows that for some tasks, such as Chopstick Using, time is a good measure

of skill. Knot Tying, Dough Rolling and Hand Drawing also show a reasonably strong

relationship between time and skill, although for Drawing the correlation is negative,

meaning the slower performances of the task usually show higher skill. However, there is

little relationship in the remaining tasks, indicating that time is unsuitable as a general

method of skill determination.

3.3.3 End Result

Another possibility is using the end result of the task. While for many tasks the end

result is important, in other tasks it can look very similar. Take the example of Suturing

shown in Figure 3.6. There is little difference between the end result of the videos ranked

first and third and while the stitching is somewhat misaligned with the guide dots in the

second video, other parts of the video are much more informative. The ranking becomes

more apparent when looking at the other frames. In the third video, larger holes are

made during stitching and the material is often stretched. These differences can also be

seen between the first and second ranked video, albeit to a lesser extent.

For other tasks, such as Drawing or Dough Rolling, the end result can be a better demon-

stration of skill (see Figures 3.7 and 3.8). However, as will be shown in Section 3.5.3,

using only the last segment is less effective than using the full video for these tasks. There

are many aspects not captured in the final result, such as the smoothness of motion or

the method used to complete the task. In Drawing, how the participant starts can be

an early indication of skill. Mistakes are also more obvious in the video than the end

result and they can be partially corrected. This is the case in Dough Rolling, where par-

ticipants may cover over holes in the dough. The Dough Rolling task highlights another

issue with the end result, where poor lighting or bad camera angles may make it hard

to obtain, such as in the lowest ranked video in Figure 3.8. Therefore, it is necessary to

use more than just the end result to rank skill.
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End Result GT Score

25

19

8

Video

Figure 3.6: Examples of three Suturing videos displaying the OSATS score and
end result alongside informative segments in the earlier parts of the video.

Lowest Highest

Lowest Highest

Figure 3.7: The end result of the sonic drawing (top) and hand drawing (bot-
tom) tasks ranked according the full-video ground-truth. The reference images
given to participants are displayed on the left.

After examining these alternative criteria for ranking skill it can be concluded that

none of them are generally applicable to many tasks. While some metrics are useful

for certain tasks, such as time of completion in Chopstick Using, in other tasks they

are poorly correlated with the human annotations. The criteria used by the annotators

is more nuanced and weighs each of the discussed metrics differently for the distinct

tasks, while also taking into account extra information which can only be seen in the

video. Using the video to determine skill will also allow estimates of skill to be obtained

59



3.4 Pairwise Deep Ranking for Skill Determination

Lowest

 

Highest

Figure 3.8: The end result of the Dough Rolling task ranked according to
ground-truth pairwise annotations.

mid-task, enabling future work on intervention and feedback. Therefore, this chapter

learns to rank skill from video for each of the different tasks. The proposed method is

explained in the following section.

3.4 Pairwise Deep Ranking for Skill Determination

This section first gives an overview of the skill determination problem (Section 3.4.1)

and the base network architecture (Section 3.4.2). Section 3.4.3 then describes how this

network architecture is adapted for the task of skill ranking. The proposed additions to

the loss function are then explained in Sections 3.4.4 and 3.4.5. Finally, Section 3.4.6

describes how the method is used to determine skill for test videos.

3.4.1 Problem Definition

The goal is to be able to learn models to rank skill in different tasks. Within a single

task, there is a set of K videos X = {xk, 1 ≤ k ≤ K}, from multiple people. Each

video is considered independently, despite some tasks having the same participant in

multiple videos. As seen in Section 3.3, people can differ in the skill they display with

each instance of the task. Thus, the aim is to obtain a relative ranking of skill per video

instead of accumulating a score per person. The relative skill between two videos xi and
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xj is defined with the following function:

E(xi, xj) =


1 xi shows higher skill than xj

−1 xj shows higher skill than xi

0 no skill preference

(3.1)

Note that according to Equation 3.1, E(xi, xj) = −E(xj, xi). Therefore, only one anno-

tation is needed per pair and pairs in the set {(xi, xj);E(xi, xj) = −1} are not considered.

These values are obtained from the annotation process described in Section 3.2). The

consistent pairs are the set P = {(xi, xj);E(xi, xj) = 1} and the similar pair are the set

Φ = {(xi, xj);E(xi, xj) = 0}.

3.4.2 Temporal Segment Network Architecture

Tasks differ in how skill can be displayed. There are two main sources of relevant

information within videos. First is the quality and types of motion used, i.e. the actions

used to complete the task and how well these actions are performed. Second is the effect

on the environment, i.e. the final result and the results at intermediate stages of the

task. The latter can be captured through RGB images contained within the video, while

optical flow can be used to focus specifically on the motions used and the quality of these

motions. Thus, a two stream convolutional neural network is used to learn to determine

skill from videos. Specifically, the proposed method is based on Temporal Segment

Networks (TSN) [194] with spatial and temporal streams (see Chapter 2). TSN was

selected due to its state-of-the-art performance on action recognition at the time.

Each stream of the TSN is trained separately. As in [194], input videos are uniformly

divided into three segments. From each segment a ‘snippet’ is randomly sampled. This

snippet consists of either a single RGB frame (for the spatial stream) or a short sequence

of horizontal and vertical optical flow frames (for the temporal stream). The TSN

produces a prediction per snippet which are combined to obtain the final prediction for

an input video. The authors of TSN [194] find average pooling to be the most effective

combination method for action recognition. This chapter also chooses average pooling

for skill determination, however other methods are tested in Section 3.5.

3.4.3 Pairwise Deep Ranking

The proposed method utilises the pairwise approach for ‘learning to rank’. To do this,

a Siamese version of the two-stream TSN is used, where weights are shared across both
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3.4 Pairwise Deep Ranking for Skill Determination

Figure 3.9: Learning to determine skill. a) All pairs of videos are considered
where the first shows a higher level of skill (P ) or their skill is comparable (Φ).
These videos are divided into T splits to make use of the entire video sequence. b)
Each split in the pair is then divided up into 3 equally sized segments as in [194].
c) TSN selects a snippet randomly from each segment. For the spatial network
this is a single frame, for the temporal network this is a stack of 5 dense horizontal
and vertical flow frames. d) Each snippet is fed into a Siamese architecture of
shared weights, for both spatial and temporal streams, of which only the spatial
is shown here. e) The score from each video split is given to one of the proposed
loss functions: ranking or similarity, depending on the ground-truth.

sides of the Siamese network. An overview of the proposed network for the spatial stream

can be seen in Figure 3.9. The method takes a pair of videos as input, where one video

is ranked higher than the other or videos are similarly ranked (Figure 3.9a). These

videos are partitioned into multiple splits to make use of the entire video. Each input

video split is then further divided into segments (Figure 3.9b) as in TSN [194] and single

frame snippets are sampled from each segment (Figure 3.9c). The corresponding snippets

sampled from each video are then fed into separate, but identical, TSNs which form the

Siamese network (Figure 3.9d). Each side of the Siamese network then outputs a score

for its input video which is evaluated by the relevant loss function (Figure 3.9e).

Note that the method aims to rank videos rather than score them according to a prede-

fined scale. Therefore, the predicted score only has meaning in relation to the predicted

scores of other videos. Given a pair of videos, where the first is ranked higher than the

second in terms of skill, the Siamese network should output a higher score for the first.

Formally, there is a set of video pairs P = {(xi, xj);E(xi, xj) = 1} (see Equation 3.1).

Let the TSN be represented by the function f(·), where the output for a video xi is

f(xi). The goal is to learn the function f such that the predicted scores can be used to

62



3.4 Pairwise Deep Ranking for Skill Determination

rank skill. Specifically:

f(xi) > f(xj) ∀(xi, xj) ∈ P (3.2)

To learn this function f , a margin loss layer is used to evaluate the ranking of each pair

of videos in P . This loss function is an approximation to the 0-1 ranking error loss and

has successfully been used for other ranking applications [190, 208]:

Lrank1 =
∑

(xi,xj)∈P

max(0,m− f(xi) + f(xj)) (3.3)

With this loss function, the derivatives for the individual examples are:

∂Lrank1
∂f(xi)

=

−1 f(xi)−m < f(xj)

0 otherwise

∂Lrank1
∂f(xj)

=

1 f(xi)−m < f(xj)

0 otherwise
(3.4)

The loss function aims to ensure the score of video xi is greater than the score of video xj

by at least the margin m. This encourages the network to learn discriminative features

to distinguish between the amount of skill displayed in different videos.

3.4.4 Pairwise Deep Ranking with Splits

Traditionally, two stream CNNs are used for action recognition [42, 166, 194] where

videos are short and the whole length of the video may need to be considered to recognise

the action. This work examines skill, which this chapter assumes could be understood

from all (or any) parts of the video. To make the most of the extent of the video, T

uniform splits are considered (Figure 3.9a). This method makes the assumption that

two videos of the same task have comparable rates of progression through the task, and

thus compares the temporal splits across a pair of videos in order. Assuming xti is the

tth split of video xi, the skill annotations are extended such that,

E(xti, x
t
j) = E(xi, xj) ∀t = 1, ..., T (3.5)

The ranking loss function now becomes:

Lrank2 =
∑

(xi,xj)∈P

T∑
t=1

max(0,m− f(xti) + f(xtj)) (3.6)
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Pairing corresponding splits allows the two videos to be compared at a similar stage

of task performance, while still being able to deal with videos of different lengths. For

instance, in the Dough Rolling task the last segment of each video is likely to contain

the stretching of the dough, while the first will contain the opening of the dough con-

tainer. It makes more sense to compare the dough stretching in one video to the dough

stretching in another, rather than compare the opening of the container in one to the

dough stretching in another. More discriminative features are likely to be learned in the

proposed way.

3.4.5 Pairwise Deep Ranking with Similarity Loss

The margin loss function in Equation 3.3 only incorporates pairs where one video is

consistently ranked higher than another. This section proposes a second loss which

aims to utilise similarly ranked pairs to learn commonalities between these videos. The

margin loss is modified to learn features which map pairs, indistinguishable in terms

of skill, to similar scores. This uses the set of pairs Φ = {(xi, xj);E(xi, xj) = 0} (see

Equation 3.1).

As opposed to making the score of one video greater than another by margin m, the new

loss aims to get the difference of the scores of similarly ranked videos within margin m:

|f(xi)− f(xj)| ≤ m ≡ |f(xi)− f(xj)| −m ≤ 0 (3.7)

Therefore, the new loss function for similarly ranked pairs becomes:

Lsim =
∑

(xi,xj)∈P

T∑
t=1

max(0, |f(xti)− f(xtj)| −m) (3.8)

This loss has the following gradients, providing a margin m > 0 is selected:

∂Lsim
∂f(xi)

=


f(xi)−f(xj)
|f(xi)−f(xj)| |f(xi)− f(xj)| > m

0 otherwise

∂Lsim
∂f(xj)

=


f(xj)−f(xi)
|f(xi)−f(xj)| |f(xi)− f(xj)| > m

0 otherwise

(3.9)
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which simplifies to:

∂Lsim
∂f(xi)

=


1 f(xi) > f(xj) +m

−1 f(xi) < f(xj)−m

0 otherwise

∂Lsim
∂f(xj)

=


−1 f(xi) > f(xj) +m

1 f(xi) < f(xj)−m

0 otherwise

(3.10)

The above equations show that this loss encourages the set of similar pairs Φ to have

similar skill scores. The overall loss function then becomes:

Lrank3 = βLrank2 + (1− β)Lsim (3.11)

Adding Lsim to the ranking loss not only allows extra data to be utilised in the learning

process, but also encourages the network to learn features which indicate similarities in

skill between similarly ranked videos.

3.4.6 Evaluating Skill for a Test Video

Following training, the learned two-stream CNN is used to evaluate skill for test videos

of the same task. In testing, σ snippets are uniformly sampled from each video xi, again

as in [194]. Each snippet xti for 1 ≤ t ≤ σ is then fed into the spatial and temporal

TSN independently. The output for each snippet is a score f(xti) for both the spatial

fspatial(x
t
i) and temporal ftemporal(x

t
i) streams. To fuse these two streams and obtain an

overall score per video, the weighted average is taken:

f(xi) =
1

σ

σ∑
t=1

λfspatial(x
t
i) + (1− λ)ftemporal(x

t
i) (3.12)

where λ is the fusion weighting between spatial and temporal information and σ is the

number of snippets in testing.

An overall ranking for a set of videos can be obtained by ordering all videos in descending

order based on f(xi).

3.5 Experiments and Results

This section presents results of experiments which test the proposed method on the

Drawing, Dough Rolling and Chopstick Using tasks described in Section 3.2 as well as the
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Surgery tasks from the JIGSAWS dataset (described in Chapter 2). First Sections 3.5.1

and 3.5.2 describe the implementation details and the evaluation metric respectively.

The different components of the proposed method are then ablated in Section 3.5.3.

Section 3.5.4 then compares the proposed method to baselines and qualitative results

are presented in Section 3.5.5.

3.5.1 Implementation Details

Dataset Splits. For all tasks, four-fold cross validation is used to report results. For

each fold, the pairs between three quarters of the videos are used in training and the

remaining pairs are used for testing. This includes pairs where neither video has been

seen in training and pairs where one video has been used in training within a different

pairing as it is important to evaluate whether the unseen videos are correctly placed

within a known ranking. Networks are learnt separately for the different tasks, although

the three Surgery tasks from JIGSAWS are trained together, as are the two Drawing

tasks. This chapter makes the assumption that these sets of tasks contain similar skill-

relevant features and therefore can be learnt together to reduce training time. This

assumption will be further explored in Chapter 5. While each task is trained separately,

the hyperparameters detailed in the sections below are the same for all tasks.

Network Input. Videos are first resized to 340×256 pixels. To avoid over-fitting,

the same data augmentation techniques as in the original TSN network [194] are used,

namely horizontal flipping, corner cropping and scale jittering. The cropped regions are

224×224 pixels. To extract optical flow frames for the temporal stream of the two-stream

CNN, the TV-L1 algorithm [211] is used.

Architecture Details. Both the spatial and temporal networks use AlexNet [82] as this

gave better results with a shorter training time than the BN-Inception [65] originally used

in TSN. Dropout, with a ratio of 0.5, is used before the first and second fully connected

layers of both the spatial and temporal networks. Both networks are initialised with

weights from pre-trained ImageNet [32] models5. The weighting parameter β between

Lsim and Lrank2 in Equation 3.11 is set to 0.5 in all experiments. T = 7 video splits are

used in training and σ = 25 snippets are used in testing unless otherwise specified (as

in [194]). All loss functions use margin m = 1. The fusion weighting between spatial

and temporal streams is λ = 0.4 (Equation 3.12) as in [194], however the sensitivity of

the results to this parameter is tested in Section 3.5.3

5The work in this chapter was carried out in 2017, before pre-training on large-scale videos datasets

such as Kinetics became available.
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Training Details. The model parameters are learnt using mini-batch stochastic gradi-

ent descent with a batch size of 128 and momentum of 0.9. In the spatial network, the

learning rate begins at 1e−3 and decreases by a factor of 10 every 1.5K iterations, with

the learning process finishing after 3.5K iterations. The temporal network’s learning

rate is initialised as 5e−3, decreasing by a factor of 10 after 10K and 16K iterations, with

learning ending at 18K iterations.

3.5.2 Evaluation Metric

To evaluate the proposed method, pairwise accuracy is used. Pairwise accuracy is defined

as the percentage of correctly order pairs. A pair is correctly ordered if the method

outputs f(xi) > f(xj) for a pair (xi, xj) where E(xi, xj) = 1 in the ground-truth. The

task annotations may not have a complete ranking as ground-truth (as explained in

Section 3.2). Pairwise accuracy allows the method to be evaluated on these tasks.

3.5.3 Ablation Study

Table 3.4 shows the results of four-fold cross validation with each loss function on each of

the four types of tasks. This table shows the proposed loss function Lrank3 outperforms

the standard margin loss function Lrank1 on almost all combinations of modality and task.

An improvement over Lrank2 can also be seen for all but the temporal results in Surgery

and Dough Rolling. This improvement is particularly noticeable in the two-stream re-

sults for Drawing (79.1% to 83.2%) and Chopstick Using (68.8% to 71.5%). From the

improvement of Lrank3 over Lrank2, it can be concluded that the inclusion of similar pairs

with Lsim is effective. This has the largest impact on the spatial network, where the

results for skill determination are generally lower. Lsim increase the performance of the

spatial network causing improvement in the two-stream result.

From Table 3.4 it can also be concluded that the temporal network is generally more

useful for determining skill in the presented tasks, with the temporal result outperforming

the spatial result in all but the Chopstick Using task. Although, this gap is reduced

with the inclusion of Lsim (Equation 3.11). This implies the motions performed are

more important for determining skill than the current state or appearance of the task

(captured in the spatial stream). However, the spatial network is beneficial to the final

two-stream result in both Drawing and Chopstick Using.
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Loss
Surgery Dough Rolling Drawing Chopstick Using

S T TS S T TS S T TS S T TS

Lrank1 64.7 72.8 69.1 77.6 79.4 78.5 75.6 77.4 78.0 67.2 67.9 68.8

Lrank2 64.4 73.3 69.0 79.1 80.4 78.5 74.9 81.8 79.1 67.2 69.9 68.8

Lrank3 66.4 72.5 70.2 79.5 79.5 79.4 77.6 82.7 83.2 70.8 70.6 71.5

Table 3.4: Results of four-fold cross validation on all tasks, for the proposed
method with each of the proposed loss functions. For all tasks, Lrank3 outper-
forms the original loss Lrank1. S=Spatial, T=Temporal, TS=Two-Stream

The largest difference between the spatial and temporal network is in Surgery. These

tasks require quick, smooth motions in order to put minimal stress on the surrounding

areas. While the end result of each stage is visually similar, the motions affect the scoring

significantly. Surprisingly, the temporal stream also has a large improvement over the

spatial stream in Drawing. Although the end result of the Drawing can be seen in the

spatial stream, the motions used to create the drawing are a key indicator of skill, this

further demonstrates the need for determining skill from the full video.

In Dough Rolling the performance of the two streams are similar. While the motions

are important here, there are also several key features which are better seen from the

spatial stream, such as holes in the dough. The performance of the two streams are also

similar in Chopstick Using, where both streams can be used to identify whether a bean

has been successfully picked up and moved. However, the two-stream result improves

over either stream independently which demonstrates the features found in each stream

are complementary.

Fusion Hyperparameter. The trade-off between the spatial and temporal streams is

further examined in Figure 3.10. This figure displays results for all tasks with different

values of λ (Equation 3.12) from 0 to 1 at intervals of 0.1. For the majority of tasks,

the combination of temporal and spatial modalities is useful, except in the Surgery tasks

which peaks at λ = 0, i.e. when no information from the spatial network is included. All

tasks benefit from the contribution of the temporal network, albeit to different degrees.

Figure 3.10 also demonstrates that the method is quite resilient to the exact value of λ

chosen, with λ ∈ [0.4, 0.7] being reasonable choices for the majority of tasks.

Consensus Function. Thus far, the consensus score between the multiple snippets

used in TSN has been formed from the mean of the individual snippet scores. This is

the same as used in TSN [194] for action recognition. However, this may not be the best

choice for skill determination. Skill might be better measured by looking at the highest
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Figure 3.10: The accuracy for each set of tasks with different λ values. The
method is resilient to the value chosen.
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Figure 3.11: The accuracy per task of the Siamese two-stream CNN with
different consensus functions in the TSN.

or lowest levels of skill displayed in the video. Therefore, different consensus functions:

mean, minimum, maximum and median are tested in Figure 3.11.

Figure 3.11 demonstrates that the best consensus function is different for each task. This

highlights the diversity between these tasks and demonstrates the challenge in learning

to determine skill for a large variety of tasks. Minimum performs well for both Surgery

and Chopstick Using. This makes sense, in surgical tasks the severity of the mistakes, or

the lack of any mistakes, is critical to measuring the success. This is similarly true for

Chopstick Using, where dropping the bean or fumbling to pick it up are key indicators

of low-skill. Interestingly, in Drawing the reverse is true, where the most successful

consensus function is the maximum. In Dough Rolling, the median and mean are the

two best consensus functions. Failures are much less critical in this task, and how failures,

such as holes in the dough, are recovered from can be an indication of skill.

Overall, the mean consensus function does obtain the best result as it is the second best

aggregation function for each task.
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Figure 3.12: The accuracy achieved when adding snippets in testing, from the
start (left), the end (middle) and randomly (right)

Number of Snippets in Testing. Up to this point, results have been reported using

σ = 25 uniformly sampled snippets in testing (Equation 3.12) in line with previous

methods [194]. However, it is interesting to examine how much of a video is needed at

test time to gain an accurate evaluation of the skill displayed. The number of snippets

and where in the video these snippets are sampled from is tested in Figure 3.12.

Figure 3.12 shows results per task when adding consecutive snippets from the start of

the video (left), the end of the video (middle) and from random locations in the video

(right). It is evident that good accuracy can be obtained after only seeing a portion of

the video, from either the beginning or the end. However, a single snippet is insufficient

to measure skill, even if this snippet comes from the end result of the task.

Accuracy converges for the majority of tasks as the number of snippets continues to

increase, indicating denser sampling is not needed. For instance, the Surgery tasks

achieve near peak accuracy with the snippets sampled from the first 20% of the video,

while the latter 20% of snippets appear to be redundant and accuracy increases much

slower when starting from the end of the video. This difference is intuitive, as the start

of the Surgery tasks are more challenging: due to the repetitive nature of the task novice

participants can improve by the end.

The Chopstick Using task performs best when using snippets from the end of the video.

This task also has a much more linear increase in performance when snippets are first

sampled from the start of a video. This is because the number of beans the participants

have successfully managed to pick up can often be counted in the final snippet. With

many segments from earlier in the video, this information is diluted and performance is

slightly decreased. However, best performance still comes with 10 snippets sampled from

the end of the video, meaning a combination of the performance of the task and end

result is best. This task highlights the need for future work to identify important frames,

both to test with and to learn from, as performance for Chopstick Using degrades as

more snippets are added from the beginning of the video.
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Method Surgery
Dough

Drawing
Chopstick

Rolling Using

RankSVM [76] 65.2 72.0 71.5 76.6
Yao et al. [208] 66.1 78.1 72.0 70.3
Siamese TSN with Lrank1 69.1 78.5 78.0 68.8
Siamese TSN with Lrank3 70.2 79.4 83.2 71.5

Table 3.5: Results of four-fold cross validation on all tasks, for the baselines
and the proposed method with Lrank1 and Lrank3

3.5.4 Comparison to Baselines

As outlined in Chapter 2, there are no generic prior methods for ranking skill, nor for per-

forming skill determination for non-surgical and non-sporting tasks. For completeness,

a method for determining skill in surgery is compared to in Appendix A. However, this

thesis focuses on methods generally applicable to a variety of tasks so existing ranking

methods, developed for other applications, are used as baselines here.

The first baseline uses the method of Yao et al. [208] which was originally proposed

for highlight detection in video. Although this method was developed for a different

purpose, it uses a general method for ranking video which is not specific to highlight

detection. First, features are extracted per frame from pre-trained networks. These are

then averaged to obtain a single feature vector per video. These features are then passed

into a Siamese network with an architecture of six fully connected layers: F1000-F512-

F256-F128-F64-F1, where F indicates a fully connected layer and the number is the

output dimension. This network uses the same margin ranking loss as in Equation 3.3

(Lrank1). Similarly to the proposed Siamese TSN, a two-stream network with late fusion

is used by Yao et al. with λ = 0.4 (as in Equation 3.12). AlexNet [82] features pre-

trained on ImageNet [32] are used for the spatial network. The temporal network uses

features from C3D [182] trained on Sports1M [78].

The second baseline uses RankSVM [75], commonly used for ranking problems. This

method also uses pairwise ranking to learn an overall ranking function, however an SVM

is instead used to learn this ranking function. The implementation from [76] was used.

The same features as in the above baseline from Yao et al. were used as input to the

SVM. Similar to other works [208, 210], these were found to be better representations

than hand-crafted features.

Comparative results are available in Table 3.5. As in the proposed method, four-fold

cross validation is used to report baseline results. The proposed method outperforms

71



3.5 Experiments and Results

Chopstick-Using

0 5 10 15
Separation

40

60

80

100

A
cc

ur
ac

y 
(%

)

Dough-Rolling

1 2 3 4 5 6 7 8 9 10
Separation

40

60

80

100

A
cc

ur
ac

y 
(%

)

Drawing

1 2 3 4 5 6
Separation

40

60

80

100

A
cc

ur
ac

y 
(%

)

Surgery

0 5 10 15
Separation

40

60

80

100

A
cc

ur
ac

y 
(%

)

RankSVM
Yao et al.
Ours

Drawing

1 2 3 4 5 6
Separation

40

60

80

100

A
cc

ur
ac

y 
(%

)

Drawing

1 2 3 4 5 6
Separation

40

60

80

100

A
cc

ur
ac

y 
(%

)

Figure 3.13: The accuracy of each task by ranking separation between pairs of
videos. The accuracy consistently increases as pairs are further apart.

both baselines on three of the four tasks. RankSVM performs best on Chopstick Using.

Chopstick Using is a relatively simple task with little visual variation between instances,

therefore it is likely deep learning methods such as the proposed approach and the

approach of Yao et al. over-fit to the data.

For the other three tasks, Yao et al. is the better performing baseline. The main

differences between the proposed method and this baseline are the use of extracted

features, dense sampling of frames and the proposed loss functions. The results of the

proposed network with the same loss function as used in Yao et al. are also shown in

Table 3.5. This demonstrates that the dense sampling of frames used by Yao et al. does

not offer an advantage over the sparse sampling in TSN, at least not for the features

used by Yao et al.. The most significant improvement with the proposed method is in

the Drawing task, which benefits equally from the choice of architecture in the proposed

method (+6.0%) and the proposed loss function (+5.2%).

To study where the difference in performance lies, the accuracy for each level of separation

between the pairs is shown in Figure 3.13. Assume there exists annotations between

pairs of videos which results in the partial ranking xi > xi+1 > ... > xi+n > xj, then the

separation between xi and xj is defined as n+1. It is more important that pairs with high

separation be correctly ordered than pairs close in the ranking, although close together

pairs will be harder to distinguish between. Figure 3.13 shows that the improvement of

the proposed method over baselines comes from the mid-level of separation in Surgery

and Drawing. Although all methods approach 100% for the most separated pairs, the

proposed method approaches this much faster. In the Chopstick Using task, where the

proposed method performs below the RankSVM baseline, the performance is comparable

at medium and high separation, only falling below for pairs close in the ranking.

3.5.5 Qualitative Results

Output rankings produced by the proposed method are shown in Figure 3.14. The errors

(highlighted with red arrows) tend to be between neighbouring pairs. In Dough Rolling,
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Figure 3.14: Example rankings produced by the proposed method are shown
for the four tasks. Wrongly ordered pairs are highlighted with the red arrows.

successful participants manage to remove the dough from the can without creating holes

and unroll the dough neatly. Participants from higher ranked videos in Drawing produce

drawings which more closely resemble the reference image. Lower ranked videos in the

Suturing Surgery task tend to not sew through the guide dots and put strain on the

surrounding tissue. In Chopstick Using, how the chopsticks are held and how many

beans are moved are key factors which determine the rank of a video6.

A key difficulty in skill determination is capturing the nuance of the tasks. Figure 3.15

visualises top-down attention of the spatial CNN on example frames from each task. This

6These results are better viewed in video form: https://www.youtube.com/watch?v=R3QoZ-FltUQ
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1 2 3 4

Figure 3.15: Spatial activations for sample frames at varying ranks.

uses the implementation of [148] based on excitation backpropagation [214]. For each

task, frame-level spatial activations are shown on four videos with varying skill.

Figure 3.15 shows that the model selects details which correspond to what a human

would pay attention to. In Dough Rolling high activations occur on holes in the dough

(1,3), curved or rolled edges (4) and when using a spoon to spread the dough (2). High

activations occur in Surgery when strain is put on the surrounding material (1,2), with

abnormal needle passes (3) and when there is loose stitching (4). In Drawing, the model

attends to specific parts of the sketch, such as the head (1,4) and mouth (2,3). The

high activations in the Chopstick Using task occur on the hand position (3,4), chopstick

position (2) and the bean locations (1,2,3). There are also some seemingly erroneous

activations such as attending to the head mounted camera in Drawing and Chopstick

Using or the hand markers in Dough Rolling.
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3.6 Conclusion

This chapter has introduced the problem of determining skill in videos of daily tasks.

Pairwise skill ranking annotations were collected for several of these tasks and a method

which learns to rank skill from pairwise video annotations was introduced. Unlike prior

work, this method is not specific to a particular task, or group of tasks, and can learn

discriminative features for each task with a reasonably small amount of data. However,

there are several limitations of the current method which highlight potential avenues for

future work.

Equal importance of video parts. This work made the assumption that skill can be

determined from any or all parts of a video. However, the results indicated that some

video parts may be more important than others when determining skill. For example, the

later parts of the video are more informative than the beginning in Chopstick Using. The

spatial attention results demonstrated that the method can focus on key regions of the

frame, however with the current method this cannot be done temporally. In Suturing

there are several parts of the action which are indicative of skill, such as pulling the

stitching tight. With the sparse sampling of frames, the method will rarely sees these

most informative parts. A method which uses temporal attention to identify the video

segments most relevant to determining skill would be a necessary extension to deal with

longer and more complex tasks. It could also make skill determination models more

explainable and therefore more appropriate for feedback systems. Chapter 4 will explore

how to learn the most important video parts for skill determination.

Limited data. This chapter has presented the first dataset for skill determination of

daily-living tasks, however the EPIC-Skills dataset is somewhat limited in scope. There

are many more daily-living tasks which require different skills to the tasks presented in

this chapter. It would be necessary to test many more tasks to confirm the method can

rank skill in the wide array of tasks covered under ‘daily living’. The amount of data

per task is also limited. While there is a reasonable number of ranked pairs per task,

the number of videos of each task is small. With this data, the method is somewhat

prone to over-fitting. Additionally, the fact that dividing the videos into splits with

Lrank2 improves the results, despite evidence that some video parts are more important

to determining skill, highlights the method’s need for a larger amount of data.

The data is also limited by the environment it is recorded in; each of the takes within

EPIC-Skills only takes place in one setting. A large amount of research into domain

adaptation [24, 120, 122, 184] has shown that CNNs do not generalise well to new en-

vironments unseen in testing. To enable new videos of a task to be accurately ranked,
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the model should be trained on more varied data with different backgrounds and more

diverse ways of completing the task. Further data will be presented in Chapter 4 which

alleviates some of these issues.

Transferable skill. This chapter made the assumption that related tasks (i.e. the three

Surgery and two Drawing task) could be trained together as they may share features

useful for determining skill. Further work is needed to investigate whether this is the case

and to what extent tasks need to be similar to share skill relevant features. The current

approach of training one network per task (or group of tasks) and requiring pairwise

annotations of every task is not scalable. Chapter 5 will explore this problem, however

there are many different directions for future work in this area. One possibility is few-

shot learning for skill determination, where a ranking for a new task could be learnt from

a small number of ranked pairs in combination with existing pair annotations (or learnt

rankings) for other tasks.

Task-specific versus general skill determination. The method proposed in this

chapter is more successful than prior ranking methods for skill determination in daily

tasks. However, methods specific to a certain task, or group of tasks, are able to utilise

prior knowledge and therefore have the potential to be more successful in these tasks.

Further work is needed to bridge this gap. This could either be through methods which

allow learning more fine-grained features specific to a task, or by automatically incor-

porating external sources of knowledge to learn what it means to be skilled in specific

tasks. Chapter 6 will take the latter approach by exploring how instructional videos

can be used to automatically assess whether individual actions have been performed in

accordance with instructions.
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Chapter 4
Attending to Skill-Relevant Video Parts

Chapter 3 proposed the first method to assess skill from videos of daily tasks. Results

show that the proposed method is applicable to a variety of different tasks and outper-

forms existing ranking baselines. However, the the method is limited by the assumption

that skill can be determined from any and all parts of the video. The results in Chapter 3

showed that this was not necessarily the case; in Chopstick Using a better accuracy was

obtained when only using the end of the video. Many other tasks will also have certain

parts or actions which are more indicative of skill than others. For instance, in cooking

tasks, collecting ingredients from the fridge is unlikely to demonstrate skill, whilst the

way in which ingredients are prepared may be key.

This chapter removes the assumption that skill can be determined from any video part

and instead learns which video parts are most informative to skill. Illustrations of the

spatial activations in Chapter 3 demonstrated that the Siamese CNN was able to attend

to informative parts within a frame, therefore this chapter focuses solely on temporal

attention. This is done in two parts. First, this chapter explores how existing temporal

attention mechanisms can be incorporated into a Siamese ranking framework and how

to stabilise the training of this attention. Second, a loss term is proposed which makes

the attention ‘rank-aware’ and able to attend to video parts particularly indicative of

either high or low skill.

This chapter also proposes a second skill determination dataset. While EPIC-Skills

allowed skill determination to be explored across various daily-living tasks, it is somewhat

limited by the amount of data per task. In this chapter, the BEST dataset is presented.

This has an increased number of ranked pairs and videos per task, as well as diversity

in environment and viewpoint and an increase in task complexity and length. The
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4.1 Bristol Everyday Skill Tasks Dataset

BEST dataset allows skill determination to be explored for further daily-living tasks and

increases the challenge for a method which aims to locate the relevant video parts.

The chapter is broken down as follows: Section 4.1 details collection and annotation

of the BEST dataset. Section 4.2 discusses the need for temporal attention in skill

determination and introduces the concept of ‘rank-aware’ attention. The method capable

of learning this ‘rank-aware’ temporal attention is then described in Section 4.3, with

Section 4.4 presenting the results of this method on EPIC-Skills and BEST.

4.1 Bristol Everyday Skill Tasks Dataset

To better explore skill-relevant parts of a video, the Bristol Everyday Skill Tasks (BEST)

dataset was collected. This section first describes the collection of the videos in this

dataset (Section 4.1.1) and the annotation of these videos for ranking (Section 4.1.2).

Section 4.1.3 then explores the contents of the dataset.

4.1.1 Video Collection

The aim of this new dataset is to provide further tasks to study in the context of skill

determination. A new dataset provides the opportunity to test on a larger assortment of

skill tasks and better understand how to deal with variety in tasks and irrelevant parts

of the video. The videos in this dataset were obtained from YouTube. This allows for

variation in background, camera angle and the steps used to complete the task, which

would be difficult to obtain in a lab setting.

Five tasks were selected: scrambling eggs, braiding hair, tying a tie, making an origami

crane and applying eyeliner. The tasks selected were deliberately varied in their content

and also differ from the tasks available in EPIC-Skills, as this allows more thorough

testing of a proposed model. The aim was to collect 100 videos per task, over twice as

many as the tasks collected for EPIC-Skills. To achieve this, the task name was used

as a YouTube query and the top 400 videos were collected. These were then filtered to

obtain good quality recordings across a variety of skill levels. Three Amazon Mechanical

Turk (AMT) workers watched each video and responded to various questions about the

video to determine its suitability for the dataset. The questions were:

• Does the video contain a person 〈task name〉?

• Is the video recorded in a landscape orientation?

• Does the video contain a clear, unobstructed view of the task?
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scrambling eggs

scrambling eggs 

Video

Figure 4.1: The AMT interface used to trim videos. AMT workers are first
shown a video explaining the start and end of the activity (left). They then
watch each video in a HIT, noting the start and end times of the task with the
buttons below the video (right).

• Does the portion of the video containing 〈task name〉 contain the full task, without

skipping large portions?

• How well did the person perform 〈task name〉?

For the latter question, AMT workers were given a choice of ‘Beginner’, ‘Intermediate’

or ‘Expert’. This initial labelling was to ensure sufficient low-skill videos were selected

before collecting the more demanding pairwise annotations, therefore it is only coarse-

grained. For each task, the set of videos which AMT workers agreed met the quality

requirements were filtered down to 100 videos. These were selected with a preference for

intermediate and beginner rated videos, which were less common.

To focus on the task itself, the videos were trimmed to exclude the introduction and end

of the video which typically contain irrelevant title sequences or the presenter talking to

camera. AMT was also used to trim the videos. For this annotation, a similar approach

to [30] was used. Specifically, each HIT contained 5 videos of the same task for which

workers were asked to annotated the start and end time of the relevant activity. The

interface is shown in Figure 4.1.

To help AMT workers understand the annotations required, each HIT began with a

demonstration of a good annotation for the relevant task. Using the same task for all

5 videos in the HIT allowed workers to become familiar with the task and thus become
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more accurate. Four AMT workers annotated each video. To obtain the final annotation

for a video, the average agreement vi(j) was calculated for each of the M = 4 annotators

using the following equation:

vi(j) =
1

M − 1

M∑
m=1,m 6=j

IoU(Vi(j), Vi(m)) (4.1)

Vi(j) is one annotator’s annotation for a video, i indexes the video and j indexes the

annotator. Workers with an average IoU < 0.2 for multiple videos are rejected and the

process is repeated until there is high agreement among the four annotators for each

video. The annotation with maximal agreement was selected as the final annotation:

ĵ = argmaxj(vi(j)) (4.2)

if vi(ĵ) ≥ 0.85, otherwise it was manually verified. Examples of the videos obtained from

this collection process are shown in Figure 4.2.

4.1.2 Pairwise Annotation

To annotate these videos for skill determination, a process similar to the annotation of

EPIC-Skills (Section 3.2.2) was used. AMT workers were asked to watch pairs of videos

simultaneously and select the video which displays higher skill. Each HIT is completed

by 4 AMT workers and contains 5 video pairs from the same task. One of these was

a quality control pair, as in the annotation of EPIC-Skills (Section 3.2.2). A pair was

taken as ground-truth only if all four annotators agreed on a pair’s ordering.

As the increase in the number of videos per task leads to an quadratic increase in the

number of pairs, it is impractical and unnecessary to annotate every video pair. Instead,

40% of the possible pairings were annotated, with each video appearing in an equal

number of pairs. This removed the need for exhaustive annotation as the transitive

nature of skill ranking could be utilised to obtain pairs outside the original 40%. If a

video xi is annotated to indicate that it shows higher skill than video xj and in turn xj

shows higher skill than xk, it is safe to assume xi shows higher skill than xk.

After annotating the selected 40%, further annotations were performed to ensure the

dataset contained challenging video pairs, close in the ranking. This is done by computing

the separation of video pairs, as in Section 3.2.2 to determine similar pairs. First a

directed graph of the pairs is created, with the videos xi ∈ X as nodes and edges xi → xj

for annotated pairs (xi, xj) ∈ P . Refer to Figure 3.4 for an illustration of the graph this
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Figure 4.2: Examples of videos in the BEST dataset. Two videos with a
difference in skill are shown for each task.
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Task #Videos #Pairs %Pairs Av. Length (s)

E
P

IC
-S

k
il
ls Chopstick Using 40 536 69% 46 ± 17

Dough Rolling 33 181 34% 102 ± 29

Drawing 40 247 65% 101 ± 47

Surgery 103 1659 95% 92 ± 41

B
E

S
T

Scramble Eggs 100 2112 43% 170 ± 113

Tie Tie 100 3843 77% 81 ± 47

Apply Eyeliner 100 3743 76% 122 ± 105

Braid Hair 100 3847 78% 179 ± 91

Origami 100 3237 65% 386 ± 193

Table 4.1: Comparing EPIC-Skills with BEST: number of videos, number and
percentage of pairs and average and standard deviation of video length.

process produces. If the two videos have the same length of the longest walk from any

source node, or a difference of only 1, that video pair is sent for annotation.

To assess whether the crowd-sourced annotations are reliable and focus on the skill for

the relevant task, a manual inspection of the annotated pairings was carried out. For

each task, a random sample of 100 video pairs was selected and ordered by a golden

annotator. The golden annotator agreed with 96% of the video orderings. This error

rate is comparable to recently published datasets [30, 215].

4.1.3 Dataset Statistics

The number and percentage pairs obtained through the annotation process is shown in

Table 4.1, along with the average video length per task. The BEST dataset is consid-

erably larger than EPIC-Skills, both in terms of videos and annotated pairs. The task

length in BEST is also generally longer and much more variable.

Potential biases in the data are measured to ensure the dataset is suitable for learning and

evaluating skill. Five potential sources of bias are selected, two concerning quality and

three relating a video’s rank on YouTube. For video quality, bitrate and frame size are

assessed. To gauge the relationship between the skill shown in a video and its popularity

on YouTube, view count, like count and like/dislike ratio are measured. Table 4.2 displays

the pairwise accuracy when using each of these metrics to rank videos. Since the majority

of tasks have an accuracy close to random (50%), it can be concluded that there is little

correlation between skill and video quality or skill and YouTube popularity for the videos

in BEST. There is some inverse correlation with frame size, however this bias should be

eliminated in any method which down-sizes the input videos.
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Task Bitrate Frame Size View Count Like Count Like/Dislike Ratio

Scramble Eggs 51.8 34.5 51.2 52.7 53.3
Braid Hair 48.8 31.0 56.3 54.9 46.2
Tie Tie 54.9 41.5 41.7 40.7 45.6
Origami 53.2 28.2 53.1 50.3 50.1
Apply Eyeliner 47.8 20.1 61.2 61.2 52.4

Table 4.2: Pairwise accuracy (%) when using quality measures of video size
and bitrate or view and like counts to determine skill.

<

<<

~ ~< ~ ~ ~ ~

Figure 4.3: An example of two scramble eggs videos from BEST. The top video
is ranked higher in the ground-truth. Many segments such as adding the milk
and placing the pan are not informative for differentiating the videos based on
skill. These videos also show variability in skill through the video, with the
bottom video showing better cracking of the eggs and the top better stirring.

4.2 Temporal Attention in Skill Determination

The previous chapter made the assumption that the same level of skill is exhibited

throughout the video, and thus skill can be determined by any of its parts. However, this

is not the case, particularly with the longer and more complex tasks in the BEST dataset.

Take the task of scrambling eggs shown in Figure 4.3, segments such as adding the milk,

placing the pan and turning on the cooker may be uninformative when determining a

subject’s skill. On the other hand, the way in which the eggs are stirred in the pan are key.

Additionally, there may be variation in skill across the video: in Figure 4.3 the participant

in the higher ranked video begins by cracking the eggs poorly, but produces better

scrambled eggs overall. This demonstrates that some actions can be more important

than others for determining skill.

Accordingly, this chapter considers skill determination to be a fine-grained video un-

derstanding problem, where it is important to first localise relevant temporal regions to

distinguish between instances. As in the previous chapter, this chapter targets skill de-

termination for daily-living tasks, where ranking videos is more suitable than estimating

an objective score.
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4.2 Temporal Attention in Skill Determination

Figure 4.4: Rank-aware attention for skill ranking. A video’s rank is determined
by using high (green) and low (red) skill attention modules, which determine each
segment’s influence to the rank. Both modules are fused (orange) for an overall
skill assessment of the video. Line opacity indicates the attention value for a
segment and the line thickness indicates the score.

Attention has been increasingly used to identify important regions in fine-grained recog-

nition problems, where intelligently weighting input is key to distinguish between sim-

ilar categories. In the video domain, attention has been adopted for action recogni-

tion [139, 146] and localisation [92, 125, 138, 162]. See Chapter 2 for a more detailed

summary. With only video-level supervision, attention allows a network to learn to fo-

cus on the segments containing the action of interest and ignore irrelevant background

segments [125, 138]. Although the BEST (Section 4.1) and EPIC-Skills (Section 3.2)

datasets proposed in this thesis are fully labelled datasets, there are similarities between

weakly-supervised action localisation and skill determination. Both problems have long

videos with only video-level labels where parts of the video will not be relevant to this

label. Therefore, this chapter aims to use attention to determine the most informative

parts of a video and use these parts to rank videos in terms of skill.

Many works which employ temporal attention use class-specific attention [96, 125, 138,

146]. This can attend to segments informative to a particular class unlike class-agnostic

attention. However, these techniques are not applicable to ranking. Therefore, this chap-

ter proposes a model to train rank-specific (referred to as rank-aware) attention.

The concept of the proposed approach is depicted in Figure 4.4. A Siamese neural

network over temporal segments is devised, which includes attention modules adapted
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from [125]. These are trained to be rank-aware using a novel loss function. This is

because relevance may differ depending on the skill displayed in the video — e.g . mistakes

may not appear in higher-ranked videos. When trained with the proposed loss, these

modules specialise to separately attend to parts of the video informative for high skill

or sub-standard performance. The overall skill assessment of the video is formed from a

weighted average of the individual segment skill scores based on the segment’s importance

to determining skill.

4.3 Rank-Aware Attention Network

This section outlines the proposed rank-aware attention network which can be used to

determine skill in long videos by attending to the most informative segments. First

the skill determination problem is reformulated in Section 4.3.1, with a focus on long

videos. Section 4.3.2 then gives an overview of the network used, with the newly proposed

loss functions which make the attention rank-aware covered in Sections 4.3.3 and 4.3.4.

The details of the attention modules within the network are then explained in Sec-

tion 4.3.5.

4.3.1 Problem Formulation

Similar to the previous chapter, this chapter proposes a supervised pairwise ranking

approach for skill determination. In this set-up, there is a set of videos x ∈ X of a

particular task. Within each task, there is a set of pairs P between the videos, where

each video pair (xi, xj) ∈ P has been annotated to indicate video xi displays higher skill

than video xj. Such pairwise annotations can be acquired for any task using crowd-

sourcing (see Sections 3.2.2 and 4.1.2). The aim is to learn a ranking function f(·) for

an individual task such that

f(xi) > f(xj) ∀(xi, xj) ∈ P (4.3)

The previous chapter assumed that these pairwise skill annotations could be propagated

to any part of the video (see Equation 3.5). Given xti is the tth video segment, t ∈ [1, T ],

skill annotations were propagated and f(·) was learnt so that,

f(xti) > f(xtj) ∀t ∈ [1, T ]; (xi, xj) ∈ P (4.4)

An alternative approach to deal with long videos [134, 208], is to use a uniform weighting
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of feature vectors to learn a video-level ranking. This would assume all parts of the video

are equally important for skill assessment, i.e. u(xi) > u(xj) where,

u(xi) = f(
1

T

∑
t

xti) (4.5)

As noted previously, these assumptions do not hold. First, some parts of the video may

not exhibit any difference in skill, such as the end result in Suturing shown in Figure 3.6.

Alternatively, video parts may even show reverse ranking — where the overall better

video has segments exhibiting less skill (see Figure 4.3). Second, non-uniform pooling

should better represent the video’s overall skill by increasing the weight for segments

more pertinent to a subject’s skill. This was the case in the Chopstick Using task, where

performance degraded as segments from the earlier parts of the video were added (see

Figure 3.12). Third, comparing corresponding video chunks (xti, x
t
j) assumes tasks are

performed in a set order at a similar rate of progression. This is also not necessarily the

case, especially with more complex and varied tasks, such as those in the BEST dataset.

This chapter deviates from these assumptions and instead aims to jointly learn temporal

attention α(·), alongside ranking function r(·) such that

s(xi) > s(xj); s(xi) = r(
∑
t

α(xti)x
t
i) (4.6)

While α(·) is a standard attention module for relevance, segments most crucial to de-

termining skill may differ depending on the subject’s skill; a low-skill subject may per-

form certain actions (e.g . mistakes) not performed by a high-skill subject and vice-versa.

Therefore, this chapter proposes to train two general attention modules to produce scores

s+ and s− for all pairs (xi, xj) ∈ P , such that:

s+(xi) > s+(xj); s−(xi) > s−(xj); s+(xi)� s−(xj) (4.7)

In particular, s+(xi)� s−(xj) will encourage the two attention modules to diverge, such

that one attends to segments which display a high skill (α+) and the other to low skill

(α−), along with separate ranking functions g and h:

s+(xi) = g(
∑
t

α+(xti)x
t
i) (4.8)

s−(xi) = h(
∑
t

α−(xti)x
t
i) (4.9)
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Figure 4.5: Given a ranked pair of videos (pi, pj), where pi exhibits higher skill
than pj, each video is uniformly split into segments. Extracted features (I3D)
are passed into a pair of attention modules to produce video-level representations
for the ranking functions (FC layers). Each ranking function produces a score
s+ (green) or s− (red). Additionally, a uniformly weighted video representation
produces a third ranking score u (blue). Three types of losses are defined: the
ranking loss maximises the margin (green-to-green, red-to-red, blue-to-blue) be-
tween the pair of ranked videos, the disparity loss ensures attention branches
outperform uniform (green-to-blue, red-to-blue) and the final loss optimises the
attention modules to become rank-aware (green-to-red).

4.3.2 Overall Network

The overall architecture is shown in Figure 4.5. The Siamese network takes a video pair

(xi, xj) ∈ P as input. Each video in the pair is split into T segments of uniform length.

The features from all video segments {xti} are then passed to the three branches of the

network. Within each branch, a video-level representation is obtained by combining

the video segments. The weights which indicate how the video segments are combined

either come from the learnt attention modules α+(·) and α−(·) (see Section 4.3.5) or

from the uniform weighting 1
T

∑
t x

t
i. Each of these branches also contains a ranking

function learnt with a fully connected layer. The ranking functions are g(·), h(·) and

f(·) respectively for the high-skill, low-skill and uniform branches. These fully connected

layers are separate for each branch, but are shared by both sides of the Siamese network.

For both videos in the pair, each of these branches produces a score, s+ for the high-skill

branch (Equation 4.8), s− for the low-skill branch (Equation 4.9) and u for the uniform

branch (Equation 4.5).

The ranking function for each branch (and attention function where applicable) is learnt

using a margin ranking loss function as in the previous chapter. Three within-branch

margin ranking loss functions are used to evaluate whether each branch outputs a higher

score for xi than xj, for a pair (xi, xj). For the high-skill branch, this loss is defined as:
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L+
rank =

∑
(xi,xj)∈P

max(0,m− s+(xi) + s+(xj)) (4.10)

where s+(xi) is the final score of video xi from the high-skill branch and m is a constant

margin. The ranking loss is defined similarly, with the same margin, for the low-skill

and uniform weighting branches:

L−rank =
∑

(xi,xj)∈P

max(0,m− s−(xi) + s−(xj)) (4.11)

Lurank =
∑

(xi,xj)∈P

max(0,m− u(xi) + u(xj)) (4.12)

The weights of the network are also optimised by two cross-branch ranking losses: a

disparity loss and a rank-aware loss. These losses further encourage the attention module

to attend to the most skill-relevant video segments and will be outlined in the following

sections.

When testing the network, a single video is evaluated and its rank is assigned through

its ranking score for the high and low skill branches:

R(xi) = s+(xi) + s−(xi) (4.13)

The uniform branch is used only to aid the learning of the attention module in the

high and low skill branches, as Section 4.3.3 and 4.3.4 will explain, and is therefore not

used in testing. Section 4.4 will also demonstrate that the attention branches are more

informative than the uniform weighting branch. Note that in training, s+(·) and s−(·) are

learnt such that s+(xi) > s+(xj) and s−(xi) > s−(xj) which implies s+(xi) + s−(xi) >

s+(xj) + s−(xj). Although α− will attend to low-skill segments, the overall score s−

reflects the correct ranking of the videos.

4.3.3 Optimising Attention with Uniform Weighting

Since the uniform weighting branch is not used in testing it may not be apparent why it is

needed. When training the high and low skill attention modules with the margin ranking

losses (Equations 4.10 and 4.11), the attention modules frequently fall into local-minima

and the results vary between runs. The segments attended to are often uninformative for

skill and learnt attention weights for such local-minima perform worse than a uniform

weighting of segments. For this reason, the uniform branch is incorporated into the
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network along with an attention disparity loss. This disparity loss explicitly encourages

an attention branch to outperform the uniform weighting branch:

L+
disp =

∑
(xi,xj)∈P

max(0,m2 − (s+(xi)− s+(xj)) + (u(xi)− u(xj))) (4.14)

Here, m2 is a separate margin from m in Equations 4.10, 4.11 and 4.12. This loss uses

the same framework as the margin ranking loss, however, similarly to a triplet loss (see

Chapter 2), it optimises the difference between a pair of values to be greater than the

difference between another pair. An analogous loss is defined between the low-skill and

uniform branches of the network:

L−disp =
∑

(xi,xj)∈P

max(0,m2 − (s−(xi)− s−(xj)) + (u(xi)− u(xj))) (4.15)

For a video pair (xi, xj), this loss causes the difference between scores s−(xi) and s−(xj) to

be greater than the difference between scores u(xi) and u(xj). This enables the network

to use the uniform branch as a reference and learn to attend to the most discrimina-

tive regions with α−, which the network can use to produce more confident ranking of

the videos in each pair. This loss alone could instead cause the performance of rank-

ing function f(·) to degrade, however by jointly optimising with Equation 4.12 this is

avoided.

4.3.4 Rank-aware Attention

With the two types of loss functions defined so far, the two learnt attention modules

α+ and α− are indistinguishable. They will attend to skill-relevant segments, however

there is no reason for one module to focus on the high-skill segments and the other to

focus on low-skill segments, nor any reason for the two attention modules not to focus

on the same segments to one another. To optimise these modules to achieve the desired

response, this chapter proposes a rank-aware loss:

Lrank aware =
∑

(xi,xj)∈P

max(0,m3 − (s+(xi)− s−(xj)) + (u(xi)− u(xj))) (4.16)

This loss ensures that the difference between the high-skill branch score s+(·) of the

higher ranked video xi and the score from low-skill branch s−(·) of the lower ranked

video xj is larger than the difference between the scores of these videos from the uniform

branch. With the requirement that m3 > m2, this loss achieves the initial goal that
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Figure 4.6: The attention module consists of K attention filters, each out-
putting a scalar weight per segment. These weights are used to pool segments
features into an overall video-level feature.

s+(xi) � s−(xj). To satisfy this loss, the attention module in the high-skill branch

attends to parts of the video where the participant displays higher skill, as these will

produce higher scores. Similarly, the attention module in the low-skill branch diverges

to attend to video segments which typically produce lower scores.

The overall training is then conducted by combining the losses:

LR =
∑

i={+,−,u}

Lirank +
∑

i={+,−}

Lidisp + Lrank aware (4.17)

As the training iterates through pairs in P , the same video will be considered higher skill

in one pair and lower in another (e.g . (xi, xj) ∈ P and (xj, xk) ∈ P ). The network ac-

cordingly optimises the shared weights so as to learn rank-aware attention modules.

4.3.5 Multi-Filter Attention Module

The attention modules α+(·) and α−(·) each take a set of T video segments and learn a

weighting of these segments informative for skill ranking. This section will explain the

structure of these modules. The two attention modules are encouraged to learn different

weights with Lrank aware, however they have the same structure, therefore this section

will refer to the generic attention module α(·).

The architecture of an attention module is shown in Figure 4.6. It consists of K filters,

each comprised of two fully connected layers. The first of these fully connected layers is

followed by a ReLU activation function and the second is followed by a softmax. This
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is based on the attention filters used in [101] and [125]. Filters are combined to achieve

segment level attention:

α(xit) =
K∑
k=1

αk(xit) (4.18)

where αk refers to the kth attention filter for the attention module α(·). Importantly,∑T
t=1 αk(xit) = 1 for each of the K filters. Multiple attention filters are included to

encourage a module to attend to the numerous skill-relevant parts present in lengthy

videos; a single filter typically focuses on only one element of the task [101]. To regularise

the K filters, a diversity loss is used. The K × T attention matrix relating to video xi

is defined as:

Ai =


α1(xi1) α1(xi2) . . . α1(xiT )

α2(xi1) α2(xi2) . . . α2(xiT )
...

...
. . .

...

αK(xi1) αK(xi2) . . . αK(xiT )

 (4.19)

and the diversity loss is as follows:

Ldiv =
∑

(xi,xj)∈P

‖AiA
T
i − I‖2F (4.20)

where I is the identity matrix and ‖ · ‖2F denotes the Frobenius norm. Similar diversity

losses have been used successfully in other applications, such as text embedding [95] —

here it is used to regularise temporal attention in video.

The non-diagonal elements akl in the matrix AiA
T
i correspond to the sum of the element-

wise product of the attention values produced by two different attention filters αk and

αl where k 6= l. Due to the softmax on the individual attention filters elements, this sum

must also be between 0 and 1:

0 ≥ akl =
T∑
t=1

αk(xit)αl(xit) ≥ 1 (4.21)

When there is no overlap between the distributions of attention values produced by

the two filters αk and αl, akl will be 0. Otherwise the value will be positive and will

subsequently cause the loss to be greater than 0. The loss will be largest when the two

attention filters give identical attention values for each video segment, in such a case

akl = 1. As a result, the diversity loss will encourage the matrix Ai to be full-rank.
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Without such a loss function, all filters will attend to the same most discriminative part

in the video. This would make multiple filters redundant. The importance of multiple

filters is assessed in Section 4.4.

The diversity loss also encourages filters to be sparse and pick the few most informative

segments. By subtracting the identity matrix, the elements on the diagonal of AiA
T
i are

optimised to be close to 1, while other elements should be close to 0. This will happen

when an attention filter αk focuses on as few video segments as possible, with other video

segments given an attention value of 0.

A diversity loss L+
div is applied to the attention module in the high-skill branch and

a second diversity loss L−div is used in the low-skill attention module. Note that the

diversity loss is within an attention module; diversity is not enforced between modules

in different branches. Attentions are allowed to overlap and do so when the segment is

relevant at all skill levels. The overall training loss then becomes:

LR =
∑

i={+,−,u}

Lirank + λ
∑

i={+,−}

Lidiv +
∑

i={+,−}

Lidisp + Lrank aware (4.22)

A weighting factor λ is introduced to down-weight the diversity losses. This loss begins

quite large, therefore can cause the network to initially only focus on diverse segments

instead of skill-relevant ones. Empirically, a weighting coefficient was not found to be

necessary for the other losses as the margins m, m2 and m3 already indicate the relative

importance of these losses.

4.4 Experiments and Results

This section reports results with the proposed method on both EPIC-Skills (Section 3.2)

and BEST (Section 4.1). First, the implementation details are described in Section 4.4.1.

The results of the proposed method are then compared to baselines in Section 4.4.2.

Section 4.4.3 studies the effect of the different loss functions and branches in the proposed

method as well as investigating other parameters such as the number of attention filters.

Qualitative results of the method are then shown in Section 4.4.4.

4.4.1 Implementation Details

Video Features. To capture the nuances of skill from a video, dense sampling is needed.

Therefore, T = 400 stacks of 16 frames are uniformly sampled at 10fps for each video

as in [125]. Images are re-scaled to have a height of 256 pixels, then centre cropped
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to 224 × 224 pixels. Features are extracted using an I3D [18] network first pre-trained

on ImageNet [32] and then fine-tuned on Kinetics-400 [79]. Including features from an

optical flow I3D network gave little improvement, so for efficiency only features from an

RGB network were used. This gives T = 400, feature vectors per video, each of which is

1024 dimensional.

Architecture Details. Attention filters consist of two fully connected layers, where

the first has an output size of 256. In all experiments the weight of the diversity losses

(Equation 4.20) is λ = 0.1. The margins for the ranking losses, disparity losses and rank-

aware losses are set to m1 = 1 (Equation 4.10), m2 = 0.1 (Equation 4.14) and m3 = 0.3

(Equation 4.16) respectively. K = 3 filters are used in both attention modules.

Training Details. All models are trained using the Adam optimiser [80] with a batch

size of 128 and learning rate of 10−4 for 2000 epochs. To prevent over-fitting, the fea-

tures are augmented by adding a small amount of noise, N (0, 0.012), as in [125]. For

stable training, the network’s parameters are optimised iteratively. For one epoch the

attention module parameters are fixed and the ranking fully-connected layer weights are

optimised using the Lrank losses (Equations 4.10, 4.11 and 4.12). For the next epoch

the ranking fully-connected layers are fixed and the attention module weights are learnt

using the remaining losses (Ldiv, Ldisp and Lrank aware). This continues to alternate until

the training is complete.

Evaluation Metric. The same evaluation metric as in Chapter 3 is used, namely

pairwise accuracy. This is the percentage of correctly ordered video pairs.

Dataset Splits. For EPIC-Skills (Section 3.2) the four-fold cross validation training

and testing splits from Chapter 3 are used. For BEST (Section 4.1) a single 75%:25%

split per task is used, as the number of pairs per task is much larger. The videos in each

split are selected randomly, although it was checked to ensure there was a reasonable

distribution of skill levels in both train and test. Unlike EPIC-Skills, the test set consists

exclusively of pairs where neither video is present in training. This is a somewhat more

challenging test set, as it only measures test videos against each other and not where

they are placed within a known ranking.

4.4.2 Comparison to Baselines

Table 4.3 shows the mean pairwise accuracy for the proposed method for each dataset.

Four temporal attention baselines are compared to, two learnt and two predefined. Fur-

thermore, the approach from Chapter 3 is compared to, which is the only prior work

to determine skill in daily-living tasks. The rank-aware attention network proposed in
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Method EPIC-Skills BEST

Chapter 3 76.0 75.8

Last Segment 76.8 61.0

Uniform Weighting 78.8 73.6

Softmax Attention 74.5 72.3

STPN [125] 74.3 70.0

Rank-aware Attention Network 80.3 81.2

Table 4.3: Results of the proposed rank-aware attention network in comparison
to baselines for the EPIC-Skills and BEST datasets. The proposed method
outperforms every baseline for both datasets.

this chapter outperforms the approach proposed in Chapter 3 by 4.3% and 5.4% on

EPIC-Skills and BEST respectively.

Last Segment is a hard-coded attention baseline. It learns a ranking function, with

a fully connected layer, using only the I3D features extracted from the last segment of

each video. Note that videos in both datasets are trimmed such that the last segment

will generally contain a clear view of the task’s end result. As explained in Section 3.3,

it could be argued that the final outcome is sufficiently informative to demonstrate a

participant’s level of skill, without having to view the rest of the task’s performance.

However, the results demonstrate that the last segment is insufficient for determining

skill for the tasks in EPIC-Skills and BEST. The last segment baseline performs worse

than the proposed method for both datasets, particularly on BEST (-20.2%).

Uniform weighting is another hard-coded attention baseline. In this baseline it is

assumed that every video segment is equally important for determining skill. A ranking

function is learnt with a fully connected layer after average pooling all I3D features

extracted from a video. The improvement of the proposed method over this baseline

is particularly large for BEST, where the videos tend to be longer and contain more

segments either irrelevant to skill or the task itself.

Softmax attention is a basic form of temporal attention without the proposed ad-

ditions, i.e. a single attention branch is optimised with only Lrank. Interestingly, the

inclusion of softmax attention decreases the accuracy for both datasets from a naive

uniform weighting of segments (-4.3% and -1.3%). Although softmax attention achieves

higher accuracy than uniform for several tasks, the softmax attention is highly incon-

sistent between runs (see the consistency experiment in Section 4.4.3), often falling into

local minima early in training.
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Figure 4.7: Individual baseline results for each task in EPIC-Skills and BEST.

The final baseline is the Sparse Temporal Pooling Network (STPN) [125], originally pro-

posed for weakly-supervised action localisation. It uses a temporal attention filter opti-

mised by a sparsity loss to encourage only a few video segments to be considered relevant.

For comparison in skill determination, the class-agnostic attention from this method is

adapted into a Siamese network optimised by the margin ranking loss Lrank.

The STPN baseline performs worse than both the proposed method and the softmax

attention baseline. There are two main difference between STPN and the softmax at-

tention: the number of attention filters (1 versus 3) and the inclusion of the additional

sparsity loss in STPN. The sparsity loss encourages STPN to select only a small number

of video segments with a high weighting. As the skill tasks are quite complex, particu-

larly in BEST, this harms the networks performance. A full evaluation into the effect of

the number of filters can be found in the ablation experiments (Section 4.4.3).

In general, the baselines struggle more on BEST as they are affected by the lengthy

videos and increase in irrelevant segments, while the last segment baseline is affected

by variations in environment and viewpoint. By focusing on key segments indicative of

skill, the proposed method is able to combat these difficulties and gain a larger increase

on this dataset.

Per Task Results. Figure 4.7 shows the performance of the proposed method and base-

lines for each task in EPIC-Skills and BEST. Overall the proposed method outperforms

all baselines on both datasets, however Figure 4.7 demonstrates that the best performing

baseline varies between tasks.

The uniform weighting and the method from Chapter 3 perform well in simpler tasks

such as Dough Rolling and Drawing, where many different parts of the video demon-

strate skill. The method from Chapter 3 also performs well for Surgery and Origami,
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while the uniform weighting performs poorly for these tasks. This is due to the method

from Chapter 3 allowing back-propagation through the features, which is beneficial to

identifying the fine-grained details relevant to skill in Surgery and Origami.

As was the case in the previous chapter, the last segment baseline is most successful

in Chopstick Using. The last segment baseline uses the I3D features used by the rank-

aware attention network, thus it incorporates more temporal information than previously.

Therefore, it will show the participant successfully picking up or struggling to grasp hold

of a bean in addition to the number of beans moved. The last segment baseline also

performs well in Drawing, where it will display the final drawing. However, like the other

tasks, it is beneficial to assess skill with more than the last segment in Drawing.

Although there is significant difference between the best performing baselines for each

task, the proposed rank-aware attention network does outperform both learnt attention

baselines (softmax attention and STPN) in nearly every task. The per-task results

highlight the difficulty of skill determination, where methods need to be applicable to

determining skill in very different tasks. By learning to attend to the skill-relevant parts

of a video, the proposed method is able to cope with the challenging diversity of tasks

and consistently perform well.

4.4.3 Ablation Study

This section examines the contribution of each model component to the performance of

the proposed method. First, the effect of the proposed loss functions is looked at, followed

by the contribution of each network branch. The improved consistency with the uniform

branch is also explored, as is the effect of the number of attention filters.

Loss Functions. Figure 4.8 shows a per-task ablation of the individual terms in the final

loss function (Equation 4.22). The inclusion of the diversity loss increases the result by

2% for both datasets. It is particularly useful for Drawing (+7.3%) and Tie Tie (+6%),

as videos in these tasks consistently have many skill-relevant segments.

Figure 4.8 also shows that using the disparity loss generally improves the result further.

Ldisp encourages the network to attend to segments which are better at discriminating

between skill levels than the uniform weighting. In tasks such as Chopstick Using and

Scramble Eggs, where the basic softmax attention performs similarly to uniform, this

can help significantly.

The proposed rank-aware loss further improves the results, particularly for BEST (av-

erage improvement of +5%). This is especially true for Scramble Eggs and Apply Eye-
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BEST

Figure 4.8: Ablation study of loss functions on all tasks. In general, each
additional loss term gives an improvement. The most significant improvement
comes from the rank-aware loss which gives an average increase of 5% on BEST.

liner (+10.4% and +8.8% respectively). These tasks contain many instances of actions

and behaviours specific to subjects with higher or lower skill, as will be seen in Sec-

tion 4.4.4.

There are three exceptions to this overall trend: Drawing, Surgery and Origami. Surgery

maintains a similar score throughout the ablation test and has the lowest final score of

all tasks. This is likely due to the I3D features not capturing the skill-relevant detail.

One explanation for this is the domain shift between Kinetics, which I3D was pre-trained

on, and the Surgery tasks. Since the Surgery tasks are performed via robotic arms, they

appear quite different to the human-object interactions and human-human interactions

found in Kinetics.

Drawing and Origami both drop with the addition of Ldisp. In Drawing, the attention

branches struggle to outperform the uniform branch, indicating that most segments are

relevant for determining skill. In Origami the movements are incredibly subtle. This,

combined with the longer length of the Origami videos, makes it one of the most chal-

lenging and complex tasks. The proposed method performs well on the majority of tasks,

however the challenges presented by the Origami task highlight that skill determination

in long video is not yet solved.

Branch Contribution. Having trained the proposed model with the overall loss (Equa-

tion 4.22), this section assesses the performance of the individual branch scores. Fig-

ure 4.9 shows that for many tasks the proposed model is able to learn high and low-skill

branches which are both more informative than uniform. This is particularly true for
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BEST

Figure 4.9: Contribution of different branches in the network. The addition of
L+
disp and L−disp cause both the high and low skill branches to perform better than

uniform in most tasks. These branches offer complementary information causing
an improvement in the final result.

tasks such as Chopstick Using and Scramble Eggs which do not benefit from attention

until the disparity loss is introduced (see Figure 4.8). Within tasks, the performance of

high and low skill branches can vary. This is evident in the Tie Tie task, with the low-

skill branch performing best (+4.3%). Here, the presence of hesitation in lower-ranked

videos proves effective for skill ranking.

The fusion of high and low skill branches further improves the average result (EPIC-

Skills +2.9% and BEST +3.2%). In many tasks, the branches offer complementary

information, as each branch can attend to separate video segments, specific to either

high or low skill. However, in some tasks, such as Origami and Apply Eyeliner, either

the high or low-skill branch on its own is more effective than the combination.

While instrumental in stabilising the training, as will be shown next, adding the scores

produced by the uniform branch when testing offers little improvement to the combina-

tion of high and low-skill branches. Since the high and low skill branches are explicitly

encouraged to pick segments more informative than the uniform weighting, there is little

information that the uniform branch is able to add. Origami is the only task for which

this is not the case, due to the high-skill branch’s poor performance in comparison to

uniform.

Consistency. The purpose of incorporating the uniform branch is to stabilise training

of the attention. Without the uniform branch and the disparity loss (Equations 4.14

and 4.15), the performance of the network is much more variable between runs. Fig-

ure 4.10 displays this variability. The full model is tested against a model without the

98



4.4 Experiments and Results

Chopstick
Using

Scramble
Eggs

Tie Tie Braid
Hair

OrigamiDough
Rolling

Apply
Eyeliner

Drawing Surgery

full model

no uniform branch

Figure 4.10: The variability in accuracy when using the proposed model with
and without the uniform branch and related losses. The inclusion of the uniform
branch has a large improvement on the consistency of the model.

uniform branch, and therefore without the disparity and rank-aware losses. Both settings

are repeated 5 times for every task in EPIC-Skills and BEST.

For every task, regardless of the improvement in accuracy obtained by the proposed

network, the consistency is significantly improved. Some tasks, such as Scramble Eggs

and Braid Hair do still have a large range in performance with the proposed method,

although the variability is much lower than previously.

Number of Filters. Figure 4.11 tests the effect of K, the number of filters per at-

tention module (see Section 4.3.5). The previous sections report results using K = 3,

which shows an improvement over a single filter in the majority of tasks. However, with

K > 3 the accuracy generally does not increase further, as less informative segments are

included. Only for Drawing does the result continue to increase with further attention

filters, as this task has the best performance with a uniform weighting of segments.

Although almost all tasks improve from the addition of multiple attention filters, the

amount each task improves is different. In general, the additional filters are more benefi-

cial in the longer, more complex tasks in BEST, as the complexity of these tasks cannot

be captured with a single attention filter.

Separate to the ablation of K, it is important to assess how the two rank-aware atten-

tion modules compare to a single attention module with double the number of filters.

Table 4.4 compares the results of a single attention module with K = 6 filters to the

proposed two attention modules optimised by the rank-aware loss with K = 3 filters.

These results show there are significant improvements for the rank-aware attention mod-

ules in many tasks, particularly those in BEST. It is clear that the proposed rank-aware

attention is doing more than simply doubling the number of attention filters.
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Figure 4.11: The number of filters per attention module (K) is tested for all
tasks. Increasing the number of filters over K = 1 shows a clear improvement in
performance for many tasks, with the majority of tasks peaking at K = 3.

Task 1 Module 2 Modules

Chopstick Using 80.1 84.7
Dough Rolling 85.2 86.9
Drawing 82.1 82.3
Surgery 70.0 68.5

Overall 79.3 80.6

Task 1 Module 2 Modules

Scramble Eggs 75.3 87.7
Tie Tie 79.4 87.6
Apply Eyeliner 79.2 85.5
Braid Hair 65.8 76.5
Origami 71.2 68.9

Overall 74.2 80.2

Table 4.4: Testing the proposed two rank-aware attention modules against a
single attention module with double the number of attention filters.

Figure 4.12: The correlation of high and low skill attention filters for all tasks in
BEST. This demonstrates attention modules attend to different video segments.

Filter Correlation. Figure 4.12 shows the Spearman’s rank correlation between pairs

of high and low skill attention filters. These are averaged over the videos for each task.

Most filter pairs in BEST have a low correlation, meaning they attend to different video
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segments. There are some cases where filters in BEST have a higher correlation (e.g .

Braid Hair at ρ = 0.8) as some video segments are relevant at all levels of skill.

The correlation between the high and low skill filters is also measured for the EPIC-

Skills tasks in Figure 4.13. As seen in Figure 4.11, increasing the number of filters in an

attention module has little effect on these simpler tasks; the additional filters focus on

the same video parts as the original high or low skill filters. This means the correlations

between each pair of high and low skill filters are similar. Despite filters within a module

being similar, the low correlations in Dough Rolling and Drawing indicate that the high

and low skill attention modules focus on very different parts of the video.

For some tasks in EPIC-Skills, such as Chopstick Using, the correlation between pairs of

high and low skill filters is large. The Chopstick Using task is relatively short and many

video segments will display features relevant to both high and low skill. The Surgery tasks

also have a reasonably strong correlation between high and low skill filters. Videos in

Surgery are typically longer than Chopstick Using, however many of segments displaying

entry and exit of the needle are relevant to all levels of skill. Despite the correlations for

both of these tasks being high, it is still < 1. This demonstrates that the two attention

modules do indeed learn to focus on different parts of the video.

Figure 4.13: Correlation between high and low skill attention in EPIC-Skills.

4.4.4 Qualitative Results

This section first looks at example ranking results which illustrate the video segments

attended to. Then the distributions of attention values throughout each task are shown.

Finally, individual high-skill and low-skill attention filters are examined.

Ranking Examples. Figure 4.14 shows example rankings for three tasks: Chopstick

Using (top), Scramble Eggs (middle) and Tie Tie (bottom). Attention weights for both
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Better 

Worse

Figure 4.14: Attention values of the high-skill (green) and low-skill (red) mod-
ules with the corresponding video segments for examples from Chopstick Using,
Scramble Eggs and Tie Tie. The intensity of the colour indicates the attention
value. The videos in each task are ordered using ranking from the combination
of high and low-skill branches.

the high-skill and low-skill attention modules are shown above the corresponding frames

of each video. From these examples, several behaviours of the attention can be observed.

Firstly, the proposed model is able to filter out irrelevant segments. For instance, turning

on the stove-top and opening the cupboard in Scramble Eggs.

Secondly, the rank-aware attention allows the attention modules to focus on different

aspects of the video to one another. This is perhaps easiest to observe in the Chopstick

Using task. The high-skill module (green) shows increased attention when a bean is

being picked up. The low-skill module (shown in red) attends to difficulties in gripping

beans.
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Similar trends can be seen in the other tasks. In Scramble Eggs, the high-skill module

consistently focuses on whisking the eggs in the bowl and gently stirring the mixture

in the pan, while the low-skill module attends to adding milk or cream to the eggs and

pouring the eggs into the pan. For Tie Tie, the high-skill module gives a high weight

to segments displaying a tight inner knot and straightening the tie before folding across,

while the low-skill module focuses mainly on hesitation1 and repetition.

Cases where the filters attend to segments seemingly irrelevant to skill can also be ob-

served; in Scramble Eggs the low-skill module attends to video segments containing

bread. This demonstrates a shortcoming of the proposed method. Due to the nature

of supervised training and the inability of an attention filter to focus on many differ-

ent aspects of the video, the model will attend to segments which can be consistently

seen across many videos as demonstrating high or low skill. This means less relevant

correlations, like attending to the bread, may appear.

A limitation of the proposed approach is that this may also cause rarer mistakes and

displays of high skill to be missed. An example can be seen in Chopstick Using in the

seventh segment of the second video, where the participant has dropped a bean while

moving it between tubs and is now trying to retrieve it. Since this type of mistake was

not seen in training, both high and low-skill attention values are low.

Distribution of Attention Values. How the temporal distribution of the attention

values vary by task is examined in Figure 4.15. This shows the average temporal attention

values per task, over both positive and negative attention modules, for the T = 400

temporal segments. Attention values are normalised between 0 and 1 and smoothed

with a sliding window of 20.

For some activities, such as Surgery, Scramble Eggs and Braid Hair, the beginning of

the task is generally most informative to skill. In Braid Hair, how well the hair is sepa-

rated and the tightness of the initial braids are particularly useful for determining skill.

Although Surgery is repetitive, the early parts of a video tend to be most informative

to skill as novices make more mistakes before they become familiar with the control of

the robotic arms. Other tasks which consist of the same actions throughout the video,

such as Chopstick Using or Drawing, tend to have a more uniform distribution of atten-

tion values. Participants may improve in these tasks, however this improvement is less

apparent within each video than in Surgery.

1This can be seen in the video version of the qualitative results available at https://www.youtube.
com/watch?v=ILvowKqiALU.
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Figure 4.15: Distribution of attention values over time for each task in EPIC-
Skills (top) and BEST (bottom).

The majority of tasks end with a peak over the final few segments where the end result

of the task can seen. As shown by the results in Table 4.3, the last segment alone is

not effective for determining skill, however for most tasks it has a useful contribution in

combination with other video parts. Scramble Eggs and Tie Tie do not have this peak

at the end of the task. In both of these tasks, earlier segments which display the method

used to complete the task are more informative than the end result itself.

Attention Filter Examples. Figure 4.16 shows examples of segments with high at-

tention values from an individual low-skill filter. The full 1.6 second segments can be

viewed in video form2, however exemplar frames are also shown here. Within each task,

a single low-skill attention filter consistently attends to similar video parts.

In Surgery, one filter attends to strain on the material as a sign of low-skill; the surgery

segments in Figure 4.16 show the central stick bending as the knot is tied. In Apply

Eyeliner, segments are indicative of mistakes as the frames show eyeliner being removed

or covered over. Mistakes are also attended to in Origami, where one filter focuses on the

paper being unfolded. For Braid Hair, one low-skill attention filter picks up on messy

hair. In Drawing, a low-skill filter attends to the segment where the participant has

finished drawing and the end result can be viewed.

Example segments with strong responses from high-skill filters are shown in Figure 4.17.

In Apply Eyeliner, the high-skill attention chooses the end result as an informative

segment for determining skill. These segments mostly demonstrate neat eyeliner with

flared edges extending beyond the end of the eyelid. For Braid Hair, segments which

show neat separation of the hair have a strong response from one high-skill attention

2Video version of qualitative results available at https://www.youtube.com/watch?v=ILvowKqiALU
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Low-skill Attention Filters
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Figure 4.16: Example video segments attended to by a low-skill attention filter
for each task.

filter. Looping the string to form the knot is attended to in Surgery, where higher

ranked videos manage to tie the knot quickly without moving the central pole.

Interestingly, segments common across multiple tasks can be see. In both Dough Rolling

and Origami, straightening of the edges is picked up as a sign of high-skill. For Drawing

pausing to think, i.e. hesitating, is indicative of high-skill. However, hesitation is a sign

of low-skill in Dough Rolling, where participants struggle to work out how to open the

can of dough.
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High-skill Attention Filters
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Figure 4.17: Video segments with maximal response from one high-skill atten-
tion filter for various tasks.

4.5 Conclusion

This chapter has presented rank-aware temporal attention, trained using a novel loss

function. The rank-aware loss enables the model to learn the most informative segments

for determining the skill shown in a video. This chapter has also proposed the disparity

loss, which directly optimises the attention to pick more informative segments than

the uniform weighting. This solves the instability in optimising the standard softmax

attention in a ranking framework.
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The proposed method has been tested on two datasets: EPIC-Skills and BEST, the

latter of which was also presented in this chapter. This new dataset allows for further

exploration of skill determination in daily-living with longer and more complex tasks. It

can also enable future work which aims to discover similarities between skill in different

tasks. The proposed method outperforms existing temporal attention methods as well as

the method from Chapter 3, the only previous method for skill determination in daily-

living tasks. With an average performance of over 80% in both datasets and an increase

by as much as 12% on individual tasks, it can be concluded that the new method is

useful for skill determination and is able to attend to informative parts of the video.

However, there are still a few limitations of the proposed approach which are outlined

below.

Temporal Dependency. This chapter has proposed an attention-based approach which

re-weights the importance of video segments based on their content. However, it predicts

attention with only local context from each individual segment and does not take into

account the importance of that segment in regards to the others attended to. Further-

more, an action may be considered indicative of high or low skill depending on when it

occurs in relation to other events in the task. For instance, in Scramble Eggs the point

at which milk or salt is added can have an effect on the outcome. Thus, future works

could explore how to incorporate temporal dependencies to determine skill.

Task Complexity. The proposed method improves the performance for many tasks,

however it struggles to find the most informative segments in tasks such as Surgery,

where movements are subtle and in a different domain to the pre-training datasets. The

proposed method uses pre-extracted I3D features to avoid issues with training on small

amounts of data, however these features are not suitable for all tasks. Further work is

needed to be able to learn and extract the best features for each task, while still being

able to learn with relatively little data per task.

Despite the proposed method being designed to cope with long videos, it struggles with

the longest task, Origami, where videos are up to 10 minutes in length. Future work

could investigate how to better cope with tasks of varying lengths and remove the need

for a set number of pre-extracted features.

Feedback and Explainability. This chapter takes a step towards the goal of providing

users with feedback, by identifying the video parts particularly relevant to the skill rank-

ing. However, it can be hard to interpret what the model is picking up on within these

segments and what improvements could be made to increase skill. More work is needed

in this area to achieve further explainability and be able to provide feedback to users
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identified as having low-skill. Further explainability could be achieved by incorporating

spatial attention, so the particular motions and attributes the model is picking up on

can be identified. One way to provide feedback could be to retrieve the same action

in a higher ranked video without the same mistake. Alternatively, future work could

study how to learn to provide automatic text-based feedback for segments identified as

low-skill. Chapter 6 will look at using narrations in instructional videos to identify how

an individual step should be performed and determine whether it has been performed in

this way.
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Chapter 5
Knowledge Transfer for Determining Skill in

Novel Tasks

Chapters 3 and 4 both presented methods to rank videos of daily-living tasks in terms

of skill. As demonstrated in the previous chapters, the presented methods are applicable

to a wide variety of different tasks. The methods do not rely on prior knowledge about

the tasks however, both methods are trained on tasks individually to learn task-specific

network weights. Chapter 4 also incorporates attention to learn the relevance of video

parts, again for each task individually. This approach of training one network per task

(or group of tasks) and requiring a sizable number of annotations for each task limits

the scalability of skill determination methods. It would be ideal to be able to utilise

previously learnt knowledge from skill determination on other tasks to adapt to a new

task with relatively little (or optimally no) labelled data.

This chapter investigates to what degree sharing is beneficial between different tasks for

skill determination and whether it is possible to transfer information from previously

seen tasks to rank videos in a new task. Specifically, Section 5.1 introduces the concept

of multi-task learning in skill determination and explores the situations when this is and

isn’t effective. Section 5.2 then establishes that, in some cases, information can be trans-

ferred to new skill tasks with little or no annotated data. However, it is hard to predict

when these transfers are possible. The difficulties with sharing features and transferring

information to new skill determination tasks are then discussed in Section 5.3.

109



5.1 Multi-task Learning

5.1 Multi-task Learning

Classically, machine learning has focussed on learning a function to solve one problem on

a particular dataset. To learn a function for another problem, further annotations or new

data are collected and the model is retrained. Prior works have shown that it is beneficial

to learn to solve related problems jointly and share the learnt representations [21, 212].

For instance, explicitly learning to predict edges may help a model learn to segment

objects in a scene. This is known as multi-task learning.

In skill determination, a ‘task’ refers to an activity in which skill can be ranked, such

as tying a tie or using chopsticks. The end goal for each task is to rank the videos

of that task in accordance with the skill they display, but the criteria for determining

skill may differ across the different tasks. Thus, the goal of multi-task learning in skill

determination is to learn common features to rank skill from videos of multiple tasks.

This is distinct from the usual multi-task learning set-up, where the aim is to learn a

generalisable feature representation which can be applied to different computer vision

problems on the same data.

This section will explore whether jointly learning to rank multiple skill tasks simulta-

neously is beneficial for the daily-living tasks in EPIC-Skills (Section 3.2) and BEST

(Section 4.1). The methods presented in Chapters 3 and 4 will be used to investigate

this. Section 5.1.1 will first report results when all tasks in a dataset are learnt jointly.

Section 5.1.2 then considers the assumption that similar tasks share skill-relevant fea-

tures and demonstrates that it is effective to learn the subtasks within Surgery and

Drawing jointly.

5.1.1 Sharing All Tasks

The skill tasks within the EPIC-Skills and BEST datasets are deliberately diverse in

their content as this allows skill determination methods to be more thoroughly tested.

However, the current method of training tasks individually is not scalable and is a

hurdle for extending skill determination to further daily-living tasks. Therefore, this

section investigates how necessary the separate training of tasks is by jointly training

tasks within EPIC-Skills and BEST.

These experiments use the same training and test splits for both datasets as the previous

chapters. That is, four-fold cross-validation for EPIC-Skills and a single training and test

split for BEST which contain 75 and 25 videos per task respectively. A single network

learns to determine skill using video pairs from all tasks. There are no pairs of videos

between different tasks and the rank across tasks is assumed meaningless. Batches are
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Surgery Dough Rolling Drawing Chopstick Using

S T TS S T TS S T TS S T TS

Separate 66.4 72.5 70.2 79.5 79.5 79.4 77.6 82.7 83.2 70.8 70.6 71.5

Joint 65.9 73.3 69.9 77.5 76.3 77.8 76.7 76.5 76.7 66.0 68.7 69.4

Table 5.1: Results of four-fold cross validation on the tasks in EPIC-Skills with
tasks either learnt jointly, with a single network, or separately, with each task
having its own network. Results are shown for the spatial (S), temporal (T) and
two-stream (TS) end-to-end models from Chapter 3.

Scramble Eggs Tie Tie Apply Eyeliner Braid Hair Origami

S T TS S T TS S T TS S T TS S T TS

Separate 67.5 77.3 77.3 74.7 80.7 82.4 81.3 68.4 76.2 62.4 71.0 70.5 67.5 71.2 72.7

Joint 67.5 68.8 69.5 66.5 83.7 83.7 76.2 74.9 76.6 73.1 56.8 66.3 64.2 68.4 69.8

Table 5.2: Comparison of pairwise accuracy when learning tasks in the BEST
dataset jointly or separately with the end-to-end model proposed in Chapter 3.

balanced such that each batch contains an equal number of video pairs from each task.

Otherwise, the hyperparameters used are also the same as in the previous chapters and

pairwise accuracy is again used to evaluate performance.

Both the end-to-end method of Chapter 3 and the Rank-aware attention method pro-

posed in Chapter 4 are tested. With the latter method sharing of the attention is tested

separately to sharing the ranking function as the parts pertinent to determining skill

are generally quite task specific and therefore may require individual attention modules.

However, there may be common features which indicate skill in different tasks.

End-to-End Multi-task Learning Results

Tables 5.1 and 5.2 report results of training tasks within a dataset jointly in EPIC-

Skills and BEST respectively. These results are obtained using the end-to-end method

proposed in Chapter 3 and are compared to separately training each task with its own

network. For EPIC-Skills none of the tasks benefit from joint training. The amount to

which jointly training hurts the result is dependent on the task and modality, with some

tasks like Surgery performing comparably to individual task training. In other cases

there is a decrease in results. This is largest in the temporal stream of Drawing (-6.2%)

and the spatial stream of Chopstick Using (-4.8%).

In BEST the majority of tasks also do not benefit from joint training. Apply Eyeliner and
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Tie Tie have comparable two-stream performance, while the accuracy drops for Scramble

Eggs, Braid Hair and Origami. Again, the amount each task is affected differs between

the modalities, although the majority of results on individual modalities also decrease.

One exception to this is Braid Hair, which has a significant improvement in the spatial

stream (+10.7%). Without further inspection of which features are shared between tasks

it is hard to conclude why this happens as Braid Hair is not visually similar to any other

task. There may be some similarities in motions between Braid Hair and Tie Tie as both

involve neat looping of separate components, however this information would likely be

in the temporal stream, which decreases in performance with joint training.

Multi-task Learning Results with Rank-aware Attention Networks

It is also interesting to know to what degree attention can be shared between tasks and

whether using separate attention for each task can enable feature sharing in the ranking

layers. Figure 5.1 compares three different sharing settings:

• Separate: completely separate rank-aware attention network weights are learnt

per task, as was done in Chapter 4

• Shared Ranker: a rank-aware attention network where the ranking function is

shared across all tasks (for both the high-skill and low-skill network branches), but

separate attention modules are learnt for each task.

• Shared Attention and Ranker: both the attention modules and ranking func-

tions are shared between all tasks.

In general, sharing the ranker causes a drop in performance as with the method from

Chapter 3. Unlike the end-to-end method from Chapter 3, the rank-aware attention

network learns a ranking on top of pre-extracted features. This network has much

less capacity than the end-to-end method tested above, which is likely the reason for

the larger drop in performance as the network no longer has enough capacity to learn

separate ranking criteria for each task within one model.

Sharing the attention in addition to the ranker causes a further drop in performance.

For the tasks in EPIC-Skills, the sharing of the ranker causes a bigger drop than sharing

the attention. In BEST, both cause a sizable drop as the tasks in this dataset are more

complex and thus more reliant on the attention to discover the key video parts. From

these preliminary results it can be concluded that it is not beneficial to learn all available

tasks jointly, instead task-specific features are required when the tasks are diverse.

These overall trends are not true for Origami, where performance increases when sharing

the ranker. Interestingly, in the separate attention and shared ranker model, the per-
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Figure 5.1: The effect of sharing the ranking layers and attention modules in
the rank-aware attention network. Tasks within EPIC-Skills (top) and BEST
(bottom) are trained jointly.

formance for Origami gains a further 1% improvement if the attention learnt for Braid

Hair is used. All other tasks perform considerably better when using their own attention

modules. Origami is the most challenging task for the rank-aware attention network

due to the differences in skill being visually very subtle. Whilst other tasks perform

better with task specific features, the features learnt for Origami struggle to rank the

videos correctly. This task therefore benefits most from more general skill determination

features learnt by training tasks together.

5.1.2 Sharing Related Tasks

While the previous experiments show jointly training a variety of distinct skill tasks is not

beneficial, this thesis has thus far assumed that highly related tasks can be trained jointly.

For instance, the Surgery and Drawing tasks within EPIC-Skills each contain multiple

subtasks. Surgery consists of Knot Tying, Needle Passing and Suturing (see Figure 2.9),

while Drawing contains a Sonic Drawing subtask and a Hand Drawing subtask (shown in

Figure 5.2). It seems reasonable to assume that these subtasks can be trained jointly, as

they are recorded in the same environment and skill performances share many high-level

properties. This is highlighted in the Surgery tasks from JIGSAWS [48], where experts

use the same OSATS criteria [108] to grade performances of the different subtasks.

This section verifies that the subtasks within both Drawing and the Surgery can be

trained jointly. The rank-aware attention network is used to test this as it is generally

the best performing model and clearly established the benefit of training unrelated tasks
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Figure 5.2: The Sonic (top) and Hand (bottom) Drawing subtasks.

separately in the previous section. If training the subtasks within Drawing and Surgery

jointly limits the performance, this model will demonstrate it. The rank-aware attention

network also offers the opportunity to test which aspects of the model are beneficial to

share, i.e. the attention and/or the ranking.

The same three settings as in the previous section are tested: separate, shared ranker

and shared attention and ranker. Figure 5.3 shows the results for the three subtasks

within Surgery. The Surgery tasks generally benefit from sharing with Needle Passing

and Suturing increasing in performance. This increase comes from sharing the ranking

layers. Knot Tying however decreases in performance when sharing the ranking layers.

Figure 5.4 shows a similar pattern for Drawing, with the fully shared model being better

than training each subtask with a separate model.

Figure 5.3: The pairwise accuracy for subtasks within Surgery when training
tasks separately or with shared components in the rank-aware attention network.

Figure 5.4: Comparison of the accuracy for subtasks within Drawing when
training tasks separately or with shared components.
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5.1.3 Multi-task Learning Conclusion

This section has demonstrated that joint training can be helpful for highly related tasks

recorded in similar environments. The amount of annotated data available for a single

skill task is limited, thus training with tasks which share properties can help a model

learn more generalisable features.

For unrelated tasks, joint training is generally not beneficial and leads to a degradation

in performance. There are some cases where tasks can benefit from joint training with

seemingly unrelated tasks. For instance, Origami in the rank-aware attention network

or Braid Hair in Chapter 3’s end-to-end network. However, it not obvious which tasks

will benefit and the improvements are not consistent over different models. Therefore,

with the current data available, it is recommended to train tasks separately.

These tasks may share some high-level features such as fluidity of movement or neatness,

however it is hard to learn these with the limited amount of data available in each task.

Such properties will manifest themselves in different ways in different tasks, meaning the

models will instead learn task specific features which are irrelevant to determining skill in

other tasks. It may be possible to learn general features applicable to skill determination

in many tasks, however many more labelled tasks would be needed.

A more viable approach would be to share parameters within subsets of tasks and to

learn which features are shareable and which are task-specific. Future work which learns

to predict which tasks are relevant to one another would therefore be very valuable. This

could be investigated in multi-task learning with soft-parameter sharing methods [100,

103, 114] which aim to learn which tasks or parameters can be shared, as opposed to the

hard parameter sharing investigated in this section.

5.2 Transfer Learning

Training individual models for each skill task is only one obstruction of applying skill

determination to a greater number of daily-living tasks. Another obstruction is the need

for a sizable amount of labelled data per task. It is therefore necessary to reduce the

amount of labelled data required when learning to determine skill for a new task. One

way to do this is by transferring knowledge from previously collected tasks to a new

related task. This is known as transfer learning.

The most widely used form of transfer learning is fine-tuning, where a network is ini-

tialised with weights learnt for a different problem on another, often larger, dataset.

Chapter 3 used this technique by initialising the TSN network with weights trained on
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ImageNet [32]. Fine-tuning is usually done with a large number of labelled samples, how-

ever it can also be studied in few-shot learning scenarios where there are only a handful

of examples available for adapting a model. Another possibility is the zero-shot setting

where the transfer is performed without using any examples to adapt the model.

In the context of skill determination, the aim is to transfer knowledge from learnt rank-

ings in one or more known (source) tasks to predict a ranking in a previously unseen

(target) task. This section will investigate whether this is possible with current models

and datasets in two ways. First zero-shot transfers between tasks in EPIC-Skills and

BEST will be studied in Section 5.2.1. While information can be transferred between

tasks, this section will demonstrate that these transfers are hard to predict and not

consistent between models. Section 5.2.2 will then summarise recent work in zero-shot

transfers on the shorter, more related AQA-7 dataset [135]. Second, the problem will

be reformulated as a meta-learning problem in Section 5.2.3 and experiments will be

performed to demonstrate that it is incredibly difficult to learn generalisable features for

skill determination, even with highly related tasks.

5.2.1 Zero-shot

This section examines whether it is possible to determine skill in a new task with zero-

shot transfers i.e. directly applying a learnt model to the new task without fine-tuning.

Figure 5.5 shows the results of this type of zero-shot transfer for both EPIC-Skills and

BEST when using the rank-aware attention network from Chapter 4. Models are trained

on a single source task before being applied to a target task. Note that the performance in

these tasks is measured with pairwise accuracy, thus random performance is 50%.

There are several zero-shot transfers between tasks with surprisingly high performance.

For instance, Chopstick Using transfers well to Dough Rolling and vice-versa. In BEST,

the model trained on Origami transfers particularly well to Tie Tie and also to Scramble

Eggs. However, not all transfers are symmetrical and the reverse is not true for these

transfers. A good transfer does indicate that the two tasks share some common properties

which can indicate skill. Although, it is not guaranteed that a model will learn these

properties as opposed to some other task-specific features.

Figure 5.5 also shows a large number of negative transfers. These are the results below

50%, where the zero-shot transfer gives a performance worse than random. Since skill

determination is a ranking problem, these negative transfers could still be useful. Neg-

ative transfers indicate that the trained model does have features useful for separating

the videos in the new task based on skill, although they give the reverse ranking.
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Figure 5.5: Zero-shot transfer between individual tasks in EPIC-Skills (left)
and BEST (right) with the rank-aware attention network.

To compare differences in transferability between models, Figure 5.6 shows the zero-shot

task transfer results for BEST with the end-to-end method proposed in Chapter 3. The

uniform baseline from Chapter 4 is also tested as this could give better understanding of

the effect of applying learnt attention to a new task. In general, the end-to-end method

from Chapter 3 has more positive transfers, but also more transfers close to the random

50% result. The successful transfers are also quite different between the three models.

With Tie Tie as the source task, the features learnt with the method from Chapter 3 are

much more transferable. The direction of the transfer can also differ between models.

The Origami to Apply Eyeliner transfer is highly negative with the rank-aware attention

network and uniform baseline, but positive in with Chapter 3’s method.

In summary, these results demonstrate that there is potential for transferring information

between skill tasks. Some of the transfers are surprising, with no obvious relationship

between the tasks which transfer well. Further work is therefore needed to understand

the relationships between tasks by examining the features which cause the positive and

negative transfers. With a larger number of skill tasks, it may be possible to build a

taskonomy [212] of skill tasks which identifies the relationships between tasks. The above

results have also highlighted the issue of negative transfer in skill, where features may

have a strong negative correlation with the ground-truth ranking. It is likely that within

a task there is a mix of positive and negative transfers from different features, as well

as many features irrelevant to the target task. Without any labelled data it would be

difficult to identify whether the correlation is positive or negative, thus few-shot transfer

between tasks seems the most promising direction.
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Figure 5.6: Zero-shot transfer between individual tasks in BEST for the uniform
weight baseline from Chapter 4 (left) and the end-to-end model proposed in
Chapter 3.

5.2.2 Related Work on AQA-7

In their recent work on action quality assessment, Parmar and Morris [133] also exam-

ined whether knowledge transfer was possible between six different Olympic sports in

the AQA-7 dataset. A more detailed summary of the dataset can be found in Chap-

ter 2. The six sports studied are: Diving (individual 10m), Synchronised Diving 3m,

Synchronised Diving 10m, Gymnastics Vault, Ski Big Air and Snowboard Big Air. The

tasks have many similar properties. All of the tasks involve some sort of launch into

the air where the participant(s) have to perform a sequence of somersaults and twists

before successfully landing. The performance in each task is judged by the how well the

sequence of somersaults and twists were performed and the difficulty of that particular

sequence, although the aggregation of these aspects may differ between tasks.

Since these tasks are only seconds in length and are more highly related than the daily-

living tasks examined in this thesis, several of the issues with transferring information

between tasks are reduced. The shorter duration of the tasks means temporal attention

is no longer needed and thus it is more likely existing transfer learning methods can

pass useful information between these tasks. The more related nature of the tasks also

increases the potential for successful transfers. This is evidenced by experiments in

multi-task learning where Parmar and Morris found that jointly training on multiple

tasks with their C3D-LSTM model was beneficial to the majority of tasks.

Parmar and Morris also perform zero-shot transfer experiments shown in Table 5.3.

Since the tasks all have ground-truth scores from Olympic judges they are trained in
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Target → Diving Gym Ski Snowboard Sync. Dive Sync. Dive
Source ↓ Vault 3m 10m

Diving 0.6997 -0.0162 0.0425 0.0172 0.2337 0.0221
Gym Vault 0.0906 0.8472 0.0517 0.0418 -0.1642 -0.3200
Ski 0.2653 -0.1856 0.6711 0.1807 0.1195 0.2858
Snowboard 0.2115 -0.2154 0.3314 0.6294 0.0945 0.1818
Sync. Dive 3m 0.1500 -0.0066 -0.0494 -0.1102 0.8084 0.0428
Sync. Dive 10m 0.0767 -0.1842 0.0679 0.0360 0.4374 0.7397

Multi-task 0.2258 0.0538 0.0139 0.2259 0.3517 0.3512

Table 5.3: Zero-shot Transfer Between Tasks in AQA-7. Correlation between
the ground-truth and predicted scores is measured with Spearman’s rank corre-
lation which ranges between -1 and 1, with 0 indicating no correlation. Results
from [133].

a regression framework and evaluated using Spearman’s rank correlation. This metric

ranges between -1 and 1, with 0 indicating no correlation between the predicted and

ground-truth ranking. Transfers seem to be most successful between the tasks which

are performed in the same environment. For instance, there is a positive result when

transferring from Ski Big Air to Snowboard Big Air and vice-versa. There are also some

positive transfers between diving tasks: models trained on Diving and Synchronised Div-

ing 10m both give a positive Spearman’s rank correlation when testing on Synchronised

Diving 3m. Table 5.3 shows that transferring from a multi-task model works reasonably

well, often performing better than individual transfers. However, when there is a par-

ticularly good transfer existing between individual tasks, as in the case of Synchronised

Diving 10m to Synchronised Diving 3m, the multi-task transfer is worse.

Despite the tasks within AQA-7 being more related to each other than the tasks within

EPIC-Skills and BEST, it is still not possible to naively transfer information between

any but the most related tasks without any labelled data. This is evident from the Gym

Vault task where models trained on any of the other tasks give negative Spearman’s rank

correlation. There are also some surprising results between highly related tasks. While

Synchronised Diving 10m transfers well to Synchronised Diving 3m, the reverse is not

true. The asymmetry of this relationship demonstrates how hard it is to determine the

relatedness of tasks without better insight into the features the model is learning.

Parmar and Morris also experiment with fine-tuning these multi-task models to new

tasks. They find fine-tuning from the model trained on the other five tasks is generally

better than training from a random initialisation, although with 25 or more video being

used for fine-tuning, this still requires a sizable annotation effort per task.
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Parmar and Morris demonstrated AQA-7 to be a promising starting point to study the

transferability between skill tasks. However, there are many opportunities for further

work. Further understanding of the features which are transferred between tasks is

needed to discern why zero-shot transfers such as Synchronised Diving 3m to Synchro-

nised Diving 10m are unsuccessful. While fine-tuning from other skill tasks was shown to

be helpful, it would be necessary to use less labelled data to be able to transfer between a

wider variety of tasks. It is also clear that being able to learn more generalisable features

in a multi-task model would be helpful as the zero-shot results on Gym Vault show the

model struggles with anything but the most related tasks.

5.2.3 Meta-learning

This section explores whether meta-learning can be used to learn more generalisable

features and better transfer information between tasks in a few-shot setting.

Meta Learning Overview

Meta learning, often also referred to as learning to learn, aims to learn a model which is

capable of generalising or easily adapting to new tasks. To achieve this, meta-learning

models are trained over a variety of different learning tasks and optimised for the best

performance over the distribution of tasks, rather than on an individual task. The goal

is outlined with the following equation:

θ∗ = arg min
θ

ET ∼p(T )[Lθ(T )] (5.1)

where T is an individual task, p(T ) is the distribution of tasks, L is the loss and θ is

the possible model parameters. This looks quite similar to a standard learning problem,

except the optimisation occurs over tasks not individual data samples.

There are several different approaches to meta-learning: model-based [121, 156], metric-

based [169, 174, 186] and optimisation-based [45, 149]. Metric-based meta-learning meth-

ods aim to learn a good distance function during training. An example is Prototypical

Networks, which learn an embedding space for classification where few-shot classes can

be recognised by their distance to the prototype of a class. These prototypes are calcu-

lated from the mean of the embedded examples for a few-shot class. Optimisation-based

approaches aim to adjust the optimisation algorithm so that the model is able to better

learn from few examples, something which gradient methods cope poorly with. Model-

based meta-learning uses models specifically designed to update their parameters quickly

with only a few training steps. For instance, Meta Networks [121] combine two different
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5.2 Transfer Learning

Require: p(T ): distribution over tasks
Require: α, β: step size hyperparameters
1: randomly initialize θ
2: while not done do
3: Sample batch of tasks Ti ∼ p(T )
4: for all Ti do
5: Sample K datapoints D = {x(j), y(j)} from Ti
6: Evaluate ∇θLTi(fθ) using D and LTi in Equation 5.2
7: Compute adapted parameters with gradient descent: θ′i = θ − α∇θLTi(fθ)
8: Sample datapoints D′i = {x(j), y(j)} from Ti for the meta-update
9: end for
10: Update θ ← θ − β∇θ

∑
Ti∼p(T ) LTi(fθ′i) using each D′i and LTi in Equation 5.2

11: end while

Algorithm 5.1: MAML for Few-Shot Supervised Learning taken from [45]

types of weights. Fast weights are predicted by a network per task and slow weights

are trained with REINFORCE [175] across all tasks. The network also stores the fast

weights in an external memory module.

A good distance function is problem dependent and as the majority of methods have

been designed for classification problems, thus metric-based approaches are not appli-

cable for skill determination. From model-based and optimisation-based approaches,

MAML [45] is chosen, a popular optimisation-based approach, as model-based methods

usually struggle to generalise to out-of-distribution tasks [44]. MAML (Model-Agnostic

Meta-Learning) aims to learn a good initialisation of a model’s parameters so a new task

can be learnt from only a few examples and a small number of gradient updates.

Applying MAML to Skill Determination

The MAML algorithm for few-shot learning is shown in Algorithm 5.1. The basic idea

is to find the optimal model parameters θ which achieve good generalisation across a

variety of tasks. These parameters should make task-specific fine-tuning more efficient.

In the inner loop, K examples are selected per task Ti and the parameters θ are adapted

over several iterations to task-specific parameters θi. After training on the individual

tasks, the parameters θ are updated in the meta-update phase. This update uses the

error of the task specific parameters on new data points sampled from each task. To

adapt to a target task T , K data points are sampled from that task and the model is

fine-tuned before testing.

This section looks specifically at applying MAML to the tasks in AQA-7. These tasks

are more similar to each other than the tasks within EPIC-Skills and BEST, thus it is

more likely a general initialisation can be found where features can be easily adapted to
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determine skill in a new task. If it is not possible in AQA-7, it is highly unlikely to be

possible in videos of longer, less related, daily-living tasks. Using AQA-7 also removes

the issue of how to incorporate temporal attention in a meta-learning framework which

this thesis leaves for future work.

In Algorithm 5.1, T is the set of source skill tasks, i.e. if the aim is to adapt to Gym

Vault as a target task, Diving, Ski Big Air, Snowboard Big Air, Synchronised Diving 3m

and Synchronised Diving 10m are the source tasks. The AQA-7 dataset uses Olympic

judges scores to label a video’s skill, thus a data point D = {x(j), y(j)} consists of a

video x(j) and skill score y(j). The model f consists of two fully connected layers on

top of pre-extracted C3D features as temporally averaging the features obtains better

performance than the C3D-LSTM model [133, 134]. Mean Squared Error (MSE) is used

to obtain the gradients:

LTi(fθ) =
∑

x(j),y(j)∼Ti

∥∥fθ(x(j))− y(j)∥∥22 (5.2)

Experiment Details

C3D features are extracted from the fc6 layer of a model trained on Sports1M [182].

A feature is extracted from each 16 frame chunk of a video, thus each video has six

4096-dimensional features. The network trained on top of these features consists of two

fully connected layers where the first has an output size of 256. The meta learning rate

β is 1× 10−5 and the base learning rate α is 0.001. K = 8 datapoints are sampled from

every task in each iteration.

Results for each task are reported on the standard AQA-7 test set. None of these videos

are seen in the training or meta update phases. Training is performed by sampling videos

from the standard training set of the five remaining tasks. As in the previous section,

performance on AQA-7 is reported using Spearman’s rank correlation.

Results and Discussion

Table 5.4 shows results when using MAML for few-shot transfer learning in skill deter-

mination. The first key takeaway is that the results for MAML with and without this

fine-tuning, i.e. few-shot versus zero-shot, are comparable. This demonstrates that the

features learnt by MAML are not easily adaptable to new skill determination tasks with

only a few examples. Skill determination is a much more fine-grained task than the

typical 5-way classification tasks performed with meta-learning. It is also likely that the

performance is dependent on the set of examples chosen, as the features which separate
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Method Fine- Diving Gym Ski Snowboard Sync. Dive Sync. Dive Avg.
tuning? Vault 3m 10m

Multi-task [133] 0.226 0.054 0.014 0.226 0.352 0.351 0.204

Multi-task (re-imp.) 0.002 0.115 0.048 0.074 0.424 0.487 0.192
MAML 0 0 0.297 0.297 0.5 0.376 0.245
MAML X -0.001 0 0.316 0.309 0.486 0.338 0.241

Table 5.4: Results of meta-learning to adapt to new tasks on the AQA-7
dataset using MAML. This is compared to MAML without fine-tuning and the
re-implementation of the multi-task model used for zero-shot transfer by Parmar
and Morris [133].

these examples need to be applicable to the rest of the task’s ranking. Future work could

explore this variability and predict the best videos for fine-tuning.

These results are also compared to a naive zero-shot transfer from a multi-task model.

This multi-task baseline is a re-implementation of the multi-task zero-shot transfer per-

formed by Parmar and Morris in Table 5.3, using the same network structure and ex-

tracted C3D features as used in the MAML results.

Overall, zero-shot transfer with MAML performs better than with the multi-task model,

although the results vary considerably with individual tasks. The results per task are

quite different from the multi-task model, demonstrating that the meta-learning has

quite a large effect on the learnt features. However, some tasks decrease in performance.

For Gym Vault the performance with MAML is equivalent to random ordering of the

videos. This may be because the training tasks have strong similarities with each other,

but are not directly related to Gym Vault, as there are three diving and two snow sports

tasks. This may also explain the success of MAML on the Ski Big Air and Snowboard

Big Air tasks. With the other snow sport present in training, the model is able to

learn features which are more applicable to the target task. This was not the case in

the standard multi-task model, where the diving tasks likely outweigh Ski Big Air or

Snowboard Big Air. For meta-learning to be successful for skill determination it seems

that many more tasks are needed.

To a certain extent, MAML does learn more generalisable features. However, with only

a handful of tasks it is evident that one or more tasks highly related to the target task

are needed in training. Therefore, this approach would not work in daily-living tasks

without annotating many more tasks for skill determination. An alternative approach

could be to identify the similarities between potential source tasks and the target task

to determine which will best transfer information to the target task.
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Figure 5.7: Visualisation of the I3D feature space for all tasks in EPIC-Skills
(left) and BEST (right). The colour intensity indicates the ground-truth rank,
higher ranked videos are displayed with a higher colour intensity.

5.3 Discussion

The previous sections reported results when learning skill tasks jointly. This proved to

be challenging, with joint-learning of the tasks within EPIC-Skills and BEST decreasing

the result in the majority of cases. Transferring knowledge from existing skill tasks

to new ones also proved difficult. While knowledge can be transferred between highly

related tasks in AQA-7 [133] and some less related tasks, such as Dough Rolling and

Chopstick Using, it is hard to predict when a transfer is possible. This section discusses

the reasons why it is challenging to share and transfer representations between tasks for

skill determination.

Generalisation. With the current data, it is incredibly hard for a model to generalise

across different tasks. Figure 5.7 shows t-SNE plots of the I3D features used to train the

rank-aware attention network proposed in Chapter 4. The colour indicates the task and

the intensity of the colour demonstrates the approximate ranking, with darker shades

corresponding to higher ranked videos. Each task is in its own distinct part of the space

and there is very little overlap between any of the tasks. Even the Surgery subtasks,

which are recorded in the same environment, are in their own separate clusters. The

exception is the two Drawing tasks which do overlap. Unlike the Surgery subtasks, all

objects present in one Drawing subtask are present in the other. The feature space looks

largely similar when jointly training all tasks, with each task still existing in its own

separate space regardless of the model used.
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Figure 5.8: Visualisation of the feature space for tasks in the AQA-7 dataset
with C3D features before training and after training with C3D-LSTM [133, 134].
Ground-truth ranking is shown with the colour intensity, with a higher intensity
meaning a higher ground-truth rank.

There is much more overlap in the C3D feature space for the tasks in AQA-7. Figure 5.8

visualises these features when C3D is pre-trained on Sports1M. As would be expected,

there is overlap between the two snow sports: Ski Big Air and Snowboard Big Air, as

well as Diving and Synchronised 10m Diving. Figure 5.8 also shows the feature space

after jointly training on all tasks. As these tasks already overlap with each other in

the feature space it is much easier to share features when jointly training these six

tasks. The overlap between Ski Big Air and Snowboard Big Air increases, as does the

overlap between the three diving tasks. However, there is little overlap between these

two clusters and the Gym Vault tasks despite this task containing similar motions as

shown in Figure 5.9.

It is incredibly hard for the method to find commonalities between tasks, even when

they share common movements and criteria for determining skill. One reason for this

is likely the differences in domain between the tasks, as each task takes place in a

particular environment. Thus, there is little sharing between tasks even when training

on the full amount of data. With meta-learning methods such as MAML struggling

to learn features which can generalise to these highly similar tasks, it would not be

possible to learn generalisable features in BEST or EPIC-Skills where motions in the

tasks themselves are incredibly different.
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Figure 5.9: A comparison of the Diving and Gym Vault tasks. Note that while
the take off and landing methods are different, both videos involve performing
multiple somersaults in a pike position.

Complexity. Part of the reason that models are unable to generalise when jointly train-

ing on multiple skill tasks is the complexity of the tasks. High and low skill can manifest

in very visually distinct ways. It is already challenging to cope with this diversity when

learning to determine skill separately with an individual task.

The feature space of AQA-7 in Figure 5.8 demonstrates this complexity. After training

there is some overlap between the three diving tasks, however this overlap is mainly

between videos which demonstrate lower skill. This is likely due to splashing being a

common feature across poorly scoring dives in each of the three tasks. There will be less

commonalities between highly scoring dives as the types of dives possible are different

in the 3m and 10m tasks. In addition, the synchronisation of the two divers is not

something which needs to be accounted for in the Diving task.

The complexity becomes even more challenging with long videos of daily-living tasks,

where Chapter 4 has shown it is important to locate the most relevant parts of a video

to determining skill. The rank-aware attention network was able to successfully locate

relevant video parts using only video-level labels indicating the overall skill shown in a

video. However, this was learnt with many video examples. As shown by the experiments

in Section 5.1, this attention is highly task specific and it would not be possible to learn

attention for a target task without additional priors about the relevant actions.

Negative Transfer. There is also the question of which features within other tasks

are relevant to determining skill in a new task. Section 5.2.1 showed many examples of

negative transfer in BEST. However, there are also examples in AQA-7 where tasks share

more similarities. It is also likely that negative transfers are present at a feature level,

as well as a task level. For example, Chapter 3 demonstrated that quicker instances of

Chopstick Using were generally considered more skillful, while the reverse was largely

true for Drawing. Time is only one feature useful for determining skill in these tasks,

many others will be more task-specific and not transferable.
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While negative transfer has been observed in other transfer learning problems [17, 35, 49]

it is not well studied. Instead, many works which aim to transfer knowledge between

different problems or domains assume that the same classes are present in both source

and target tasks and therefore aim to transfer knowledge by minimising the disparity

between the feature spaces of the two tasks. Wang et al. [201] formalised the concept of

negative transfer and presented a method which reweights the most relevant samples on

the source tasks. This type of approach is unlikely to be helpful in skill determination

as irrelevant and negatively correlated features will likely be present in all videos of a

task. For instance, the amount of splash during the water entry in Diving is not useful

for determining skill in Gym Vault. Regardless of the videos used, the concept of the

water entry is irrelevant, although the higher-level concept of a good landing is present

in both tasks.

Unlike classification tasks, negative transfers could be useful in skill determination. A

negative correlation with the ground-truth demonstrates that there are some features

useful for separating the video. However, a method is needed to identify these negative

transfers so they can be utilised to improve the predicted ranking.

5.4 Conclusion

This chapter has explored whether models can be shared between different skill tasks and

why transferring information to new tasks is particularly challenging in skill determina-

tion. The assumption that highly similar skill tasks could be trained jointly was verified

and jointly training on less related tasks was also tested. While multi-task training was

generally harmful to the results on BEST and EPIC-Skills, there were some surprising

results when performing zero-shot transfers on these datasets. Seemingly unrelated tasks

such as Dough Rolling and Chopstick Using obtain good results when a model trained

on one task was applied to the other without any fine-tuning. This demonstrates that

sharing of skill determination features should be possible, however it is difficult with

current methods.

There are several steps which can be taken to overcome the challenges outlined in Sec-

tion 5.3. First, better understanding of the relatedness of skill tasks is needed. With a

larger number of annotated tasks it would be possible to build a taskonomy [212] of skill

tasks and investigate transfers from subsets of source tasks. Knowledge of which groups

of tasks share common skill features would be useful to explore future work in predicting

relevant source tasks. Examining these task relationships will explain why the multi-task

training works so poorly despite some of the zero-shot transfers being successful.
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With this understanding, future directions in both multi-task learning and transfer learn-

ing could be explored. This chapter investigated multi-task learning with hard parameter

sharing of all tasks within a dataset. It is likely many tasks will share some low-level

features while certain subgroups of tasks will share higher-level features. Thus more

adaptable feature sharing methods [100, 103, 114] could be applied to the skill deter-

mination problem to identify relationships and better cope with the limited amount of

data available per task.

Future work in transfer learning could aim to predict which tasks and features within

these tasks are the most useful to learn from. Recent work has explored attentive feature

distillation and selection in the context of classification [191]. It would be interesting to

adapt this to a ranking problem with a method which is able to make use of negative

transfers. Another future direction is to investigate the transfer of temporal attention

separately to the ranking. This would allow transfer learning in skill determination of

daily-living tasks where only certain parts of the video are informative to skill.

To explore each of these directions further annotated skill tasks would be needed, as even

with the short, highly related tasks in AQA it is difficult to transfer information between

tasks. More data could also increase the ability of models such as MAML to learn general

skill-relevant features which could easily be adapted to new tasks. Another possibility

is to incorporate external knowledge about the skill-relevant parts of a video and what

properties skillful performances of these subtasks have. Chapter 6 takes this direction

by identifying skill-relevant actions as those described with adverbs in the narrations of

instructional videos. The chapter then proposes a weakly-supervised method to learn a

representation for these adverbs shared across tasks and actions.
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Chapter 6
Learning from Adverbs in Instructional

Videos

Chapters 3 and 4 both proposed methods which are capable of learning to determining

skill in many different tasks. This is a step forward from prior work which focussed

on skill in particular domains such as surgery and sports, thus proposed task-specific

methods. However, the methods from Chapters 3 and 4 are still limited by the need to

train skill tasks separately, with each new task currently requiring its own labelled data.

Chapter 5 explored whether features could be shared or transferred between tasks, how-

ever this is incredibly challenging without additional information about what attributes

skillful performances in different tasks share.

In Chapter 4, ranked videos from YouTube were used to learn to determine skill. Many

of the higher ranked videos in the BEST dataset are instructional videos, made for

the purpose of demonstrating how the task should be completed. These videos contain

accompanying narrations indicating the way in which the instructor is completing the

task. Often in these narrations, the instructor highlights key parts of the task which

need to be completed in a certain way to achieved the desired outcome.

This chapter explores how instructional videos can be used as a source of external in-

formation about a task to identify and evaluate its skill-relevant parts. Specifically, it

focuses on adverbs, which indicate how an action should be performed in order to com-

plete the instructed task well. Therefore, a method which correctly associates relevant

adverbs with an action can be used to identify whether this action has been performed

in a skillful manner. Such a method is presented in this chapter along with an adverb re-

trieval dataset containing six adverbs (‘partially’, ‘completely’, ‘quickly’, ‘slowly’, ‘finely’
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and ‘coarsely’) across 72 distinct actions. The representation for these adverbs is shared

across tasks and actions, thus this is a step in the direction of sharing skill determination

features across different tasks.

The problem of weakly-supervised adverb retrieval is introduced in Section 6.1. Secondly,

an adverb dataset and accompanying semi-automatic method to collect such labels are

presented in Section 6.2. Section 6.3 proposes a weakly-supervised embedding approach

for adverb retrieval. This is then evaluated in Section 6.4.

6.1 From Narrated Adverbs to Action Modifiers

As discussed in Chapter 2 many works have utilised the narrations of instructional videos

as a form of free supervision. For instance, several works aim to learn the key steps nec-

essary to complete a task from instructional videos [2, 105, 161, 218]. While identifying

the steps necessary to complete a task (or their order) can be relevant to determining

skill, this is not all that is needed. As shown in the BEST dataset (Chapter 4), the

participants displaying little skill often still complete the task. It is how or how-well the

steps within the task are performed which differentiates videos in terms of skill.

Instructions, such as recipes, identify these key steps and indicate how these steps need

to be performed to achieve the desired outcome. As well as including these kind of

directions, instructional videos contain visual example of the instructed way to perform

a step. This makes these videos an ideal form of data for learning characteristics of

skillful performances in a task.

An example of an instructional video for the task of ‘making a meringue’ is shown in

Figure 6.1. In some cases the key steps are indicated by the desired state of an object e.g .

‘whisk the egg whites until stiff’. In other cases, adverbs illustrate how an action should

be performed e.g . ‘slowly add the sugar’. As discussed in Chapter 2 many works have

tackled the problem of recognising attributes of objects, however few works have looked

at adverbs in video. This chapter thus focusses on the latter type of instruction.

This chapter aims to utilise instructional videos and accompanying narrations to learn

to retrieve adverbs which describe how the task is being performed. However, this form

of supervision is weak and noisy as instructional videos are created to instruct people

in a task, not to provide a supervision for computer vision algorithms. The narrations

are only roughly aligned with the actions in the video. In some cases the narration

will occur before the step is demonstrated so viewers know what they are about to see.

In others, the description of the step will be given after the action has finished. This
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Figure 6.1: The key steps for making a meringue as shown in an instructional
video.

Type Gives information about Example

Manner How something happens chop the onion finely
Place Where something happens just strain the mixture here
Time When something happens I made this bread earlier
Degree How much something happens we’ve almost added everything we need
Focusing Something specific only mix in the sugar
Evaluative The speaker’s opinion surprisingly it will combine together
Viewpoint The speaker’s perspective personally I don’t remove the seeds
Linking Relationships between clauses therefore we need to loosen the screws

Table 6.1: Types of adverb, taken from the Cambridge English Dictionary 1

visual resolution is an insignificant effort for humans, but still a challenging problem in

automatic video understanding. Additionally, the narrated actions may not be captured

in the video altogether. For example, an instructional video might be narrated as ‘pour

in the cream quickly’ but the visuals skip to the cream already added as it is a trivial

step for humans to perform. In this case the video would not be useful to learn the

adverb quickly.

There are many types of adverbs and not all adverbs are relevant to skill. Table 6.1

shows the types with examples of each. This chapter focuses on ‘manner’ and ‘degree’

adverbs as these are the skill-relevant adverbs which describe how an action should be

performed. Even within these categories, many adverbs are ambiguous or subjective

and not pertinent to skill, e.g . ‘beautifully’ or ‘cheerfully’. Therefore, this chapter works

with a manually filtered subset of adverbs and focuses on the challenges of retrieving the

1https://dictionary.cambridge.org/grammar/british-grammar/adverb-phrases
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relevant adverb(s) while coping with weak-supervision and learning representations for

these adverbs which are shared across different tasks and actions.

This newly presented task of weakly-supervised adverb retrieval attempts to learn a rep-

resentation for these adverbs from noisy and poorly aligned narrations. An illustration

of the proposed approach is shown in Figure 6.2. This approach tackles two of the main

challenges in learning a representation for adverbs from weak supervision: learning the

visual representation only from the relevant parts of the video and disentangling the

adverb from the action allowing adverbs to be applied to multiple actions. First action-

adverb pairs from the narrations are identified. These are then used to embed portions

of the video relevant to the action in a joint video-text embedding space. Since adverbs

generalise to different actions and modify the manner of an action, they are learnt as

action modifiers, i.e. transforms in the video-text embedding space, which are shared

between actions. From this space, the relevant adverb can be retrieved by measuring the

proximity of the modified action to the embedded video.

Figure 6.2: A joint video-text embedding space can be learnt from instructional
videos and accompanying action-adverb pairs in the narrations. Within this
space, adverbs are learnt as action modifiers — that is transformations which
modify the embedding of an action. Video portions relevant to the narrated
action are attended to and these are embedded close to the action text embedding
modified by the narrated adverb.
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6.2 An Adverb Retrieval Dataset

This section details the semi-automatic annotation procedure used to obtain annotations

of action-adverb pairs from instructional videos. The source for the instructional videos

is explained in Section 6.2.1. Section 6.2.2 then introduces the method use to obtain

action-adverb annotations from these videos and Section 6.2.3 explores the contents of

the dataset.

6.2.1 Instructional Videos

HowTo100M [110] is a large-scale dataset of instructional videos collected from YouTube,

primarily used for pre-training video understanding models. Each video has a corre-

sponding narration, either from manually entered subtitles or YouTube’s Automatic

Speech Recognition (ASR). Videos are sourced by querying YouTube for a variety of

“how to” tasks (e.g . “how to prune a tree”), sourced from WikiHow [1]. The dataset

consists of 1.22 million videos of tasks from a variety of domains ranging from cooking

and DIY to health and education.

When initially querying the videos from HowTo100M for adverbs, many of the adverbs

found came from completely irrelevant videos, such as documentaries or people reading

books aloud. The videos in HowTo100M are obtained automatically and are not filtered

manually, therefore many are not relevant to the queried “how-to” task. While adverbs

used in instructional videos often indicate an important instruction relevant to the task,

the use of adverbs are relatively infrequent within a video. Thus the adverbs found in

the irrelevant videos outweigh the skill-relevant adverbs from instructional videos. This

is less of an issue when performing video-text retrieval on HowTo100M with all parts-of-

speech, as the focus is more on verbs and nouns which are frequent within all types of

video, therefore the noise is proportionally much smaller.

To avoid a large proportion of the noise, this chapter considers the set of tasks previously

explored in CrossTask [218] and uses all available videos from HowTo100M for these 83

tasks. The tasks predominately come from the domains of cooking, drink-making, DIY

and car maintenance. These are divided into 65 tasks for training and a disjoint set of

18 ‘related’ tasks for testing. Each training task consists of between 100 and 500 videos.

In total this gives 24,558 videos in training and 1,280 in the test set.

Examples of these tasks can be seen in Table 6.2. Videos of the same task will often

contain the same adverbs describing the same steps, as shown in Figure 6.3. This will

allow a model to learn a generalised representation of the adverb which is not dependent

on the viewpoint or appearence of the object being used. Adverbs are also shared across
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Training Task Av. adverb

Make Tiramisu Coffee 1.73
Make a Christmas Cake 1.72
Make a Black Forest Cake 1.70
Make Peppermint Meringue Cookies 1.41
Make Battenburg Cake 1.28
Make Vanilla Custard 1.11
...
Make Chilli Con Carne 0.74
Make Blueberry Pancakes 0.67
Build a Desk 0.66
Change a Hubcap 0.65
Grill Kabobs 0.64
Make Mocha Nutella Gelato 0.63
...
Make an Americano 0.21
Make a Frappe 0.20
Make Limeade 0.19
Make Bicerin 0.14

Test Task Av. adverb

Make Meringue 1.63
Make French Strawberry Cake 1.61
Make Kerala Fish Curry 0.98
Change a Tire 0.85
Grill Steak 0.80
Make Bread and Butter Pickles 0.78
Make French Toast 0.72
Make Pancakes 0.65
Jack Up a Car 0.64
Build Simple Floating Shelves 0.62
Add Oil to Your Car 0.57
Make a Latte 0.51
Make Kimchi Fried Rice 0.51
Make Jello Shots 0.49
Make Banana Ice Cream 0.44
Make Taco Salad 0.43
Make Irish Coffee 0.31
Make Lemonade 0.30

Table 6.2: Example “how-to” tasks in the CrossTask dataset for training (left)
and testing (right). For each task the average adverbs found per video is dis-
played.

Figure 6.3: Examples of how action-adverb pairs vary within and between
tasks. Adverbs often modify the same action in different videos of the same
task, however the viewpoint and objects used can be visually diverse. The same
action-adverb pair can also be found in different contexts in other tasks.
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different tasks, where they appear modifying the same action applied completely different

objects as well as other actions. Separating the dataset into training and testing splits

by task allows the generalisation of the proposed action modifier model to be tested, as

the actions and adverbs will have been previously seen, but in different contexts.

The aim of this chapter is to learn a representation for adverbs from the weak-supervision

of an adverb’s presence in a video’s narration. Therefore, the next step is collect all

examples of adverbs from the above tasks, where each adverb is paired with the action

it applies to and the accompanying video.

6.2.2 Collecting Adverb Annotations

The narrations of the instructional videos are used to discover action-adverb pairs for

both training and testing. English subtitles containing transcriptions of these narrations

are extracted from the YouTube videos. In many cases, accurate subtitles are provided

by the video owner. Where these are not available, YouTube’s ASR is used to generate

subtitles automatically.

To locate adverbs, Part-of-Speech (PoS) tagging and dependency parsing are performed

with SpaCy’s English small core web model. PoS tagging predicts the type of each word

within a sentence, while dependency parsing builds a graph of the relationship between

words. The output of this step is displayed in Figure 6.4. Since YouTube’s ASR subtitles

are not punctuated, T-BRNN [180] is employed to punctuate these before PoS tagging

to improve the result.

Adverbs (tagged with ‘RB’) are selected if they have an advmod dependency to a verb.

For example, ‘slowly stir’ in Figure 6.4. Verbs are indicated by any of the tags listed in

Table 6.3, however verbs with ‘VBD’ and ‘VBZ’ tags are removed as these correlate with

actions not being shown in the video. After observing many examples, verbs tagged with

‘VBN’ were not removed, despite being a form of past tense. This form is often used as

the instructor is finishing the step, therefore the action is often present in the video. It

is also necessary to check whether an adverb is negated. For instance, ‘don’t chop the

pepper finely’ is entirely different to ‘chop the pepper very finely’. This can be detected

by inspecting whether any words are connected either to the adverb or corresponding

verb with a ‘neg’ dependency.

However, not all adverbs and actions obtained from this process are visually relevant.

As mentioned previously, ‘manner’ and ‘degree’ adverbs have the most potential to be

skill-relevant. Even within these categories many adverbs are not useful for determining

skill as some ‘manner’ adverbs describe the emotions with which an action is performed
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Figure 6.4: An example output from the dependency parsing. Verbs and ad-
verbs with the ‘advmod’ dependency are extracted as annotations.

Tag Description Example

VB Base form spread all this evenly
VBD Past Tense I already chopped this coriander finely
VBG Gerund or present participle I’m stirring these together gently
VBN Past participle once all of your sugar has been

incorporated slowly
VBP Non-3rd person singular present now I wash my ingredients thoroughly
VBZ 3rd person singular present everything fits together neatly

Table 6.3: Verb tags alongside examples found in instructional video narrations

e.g . ‘happily’. Therefore, adverbs, as well as actions, are manually filtered. Automatic

approaches for this filtering were explored, namely using concreteness scores [13] of each

word, however this was unreliable. Concreteness scores seemed to have little correlation

with how visual an adverb or action was. For instance, globally had a higher concreteness

score than quickly.

Actions and adverbs are also grouped into clusters to avoid synonyms, i.e. words with

the same meaning. For example, ‘put’ and ‘place’ are considered to be the same action.

Again, automatic approaches were attempted for this, specifically WordNet [113] hierar-

chies and Word2Vec [112] embeddings. Both of these approaches have successfully been

used to group objects in computer vision, however they do not work well for grouping

verbs [30] nor, as found here, adverbs.

WordNet is a hierarchical dataset of English words grouped into sets of cognitive syn-

onyms (synsets) which each expresses a distinct concept. Words have multiple synsets

for each use case of the word. Without knowing the correct synset it is not possible

to group the actions or adverbs correctly. Furthermore, the adverbs and verbs do not

have as deep and as fine-grained a hierarchy as nouns, for instance easy and tardily are

considered synonyms of slowly.
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Adverb Count Antonym Count

completely 2045 partially 763
gently 1545 firmly 319
quickly 933 slowly 878
properly 1734 improperly 62
finely 804 coarsely 78
separately 737 together 67
evenly 748 unevenly 42
carefully 460 carelessly 8
easily 408 strenuously 30
continuously 319 periodically 20
tightly 271 loosely 59
gradually 219 instantly 1
forward 98 backward 16
generously 66 sparingly 0
vertically 40 horizontally 20
underneath 46 above 2
neatly 27 messily 7
upward 14 downward 5
inward 2 outward 2

Table 6.4: Counts of adverbs and their antonyms found by the narration parsing
process from the training set videos.

Word2Vec is an unsupervised method which uses word co-occurrence to learn an embed-

ding space of words. Within this space it is possible to calculate the similarity of two

words uses cosine similarity of the vectors which represent the words. However, adverbs

are often similar to their antonyms, i.e. words with completely opposite meanings. For

example, quickly is more similar to slowly than to fast.

Clustering was thus performed manually and resulted in 38 adverb clusters and 72 action

clusters. The adverbs are organised into adverb-antonym pairs where the adverbs have

opposite meaning, e.g . completely is the opposite of partially. Instances of negated

adverbs are placed in the cluster corresponding to the antonym of that adverb, e.g .

‘don’t mix it completely’ is considered an instance of mix partially.

From this process, 15,266 instances of action-adverb pairs are obtained. The counts per

adverb in the training set can be seen in Table 6.4. However, these have a long tail

of adverbs which are mentioned only a handful of times. Furthermore, the problem of

recognising adverbs across different actions is incredibly challenging due to the noisy,

weak supervision from the narrations and the adverb’s visual appearance being highly

dependent on the action. Therefore, this chapter restricts the learning to 6 commonly
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Figure 6.5: Log-scaled y-axis shows instances of each adverb plotted per action.
Adverbs are displayed against their paired antonym.

used adverbs, that come in 3 pairs of antonyms: partially/completely, quickly/slowly and

finely/coarsely. These are selected as they are relatively unambiguous (unlike properly

versus improperly) and the adverb and antonym have a large amount of overlap in the

actions they apply to (unlike gently and firmly2). The aim is to focus on the problem

of using weak supervision to learn a representation of adverbs across many actions and

leave the issue of few-shot adverb retrieval for future work.

The mean of the timestamps for the detected verb and adverb is used as the weak su-

pervision for the action’s location. As the data is noisy, the test set is cleaned. The

main source of noise is whether the action and adverb occurs around the weak times-

tamp. Thus, videos are only included in the test set if the action is present with the

corresponding adverb within ± 10 seconds around the weak timestamp.

6.2.3 Dataset Makeup

The final distribution of the action-adverb pairs are shown in Figure 6.5. In total, adverbs

appear in 264 unique action-adverb pairs with 72 actions. There are 5,475 individual

instances in training and 349 in the cleaned test set. This corresponds to 44% of the

original test set. A higher level of noise than HowTo100M’s report 50% is obtained [110],

even after restricting the tasks examined to those in the CrossTask subset. The authors

of HowTo100M measure a clip as relevant to its caption if any verb or noun in the caption

is present in the video clip. In this chapter, an annotation consists of a single verb and

a single adverb and a clip is only deemed relevant if both the action and the adverb are

present.

Examples of the adverbs and actions obtained through the narration parsing process

are shown in Figure 6.6 alongside the corresponding video. In some cases, the action is

2Firmly is used predominately in combination with cut, press and fill, whilst gently is mainly used
with add, fold, cook, mix and dip
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Figure 6.6: Example videos and narrations, highlighting the action and adverb
discovered through the narration parsing pipeline.

well aligned with the weak timestamp, such as in the top row of Figure 6.6. However

in many cases the weak timestamp is not a good localisation, as demonstrated by the

remaining rows. The action could be long (second row) and thus a single timestamp is

a poor representation. Alternatively, the timestamp could be a poor match as in third

row, where the narrated action happens earlier and a different action is occurring at the

weak timestamp. In other cases the action may not be captured in the video at all: in

the fourth row only the end result of dicing of the spring onion is shown, while in the

fifth, the instructor is discussing something irrelevant to completing the task. The next

section explains how these challenges are overcome to learn a representation for adverbs

from instructional videos.

6.3 Learning Action Modifiers

This section introduces the method which is able to learn representations for adverbs

from weak supervision in instructional videos. An overview of the method can be seen in

Figure 6.7. The inputs to the model are action-adverb narrations and the accompanying

instructional videos, e.g . “...start by quickly rolling our lemons...” (Figure 6.7(a)), from

which the action roll and the adverb quickly are identified (see Section 6.2). The aim

after training is to be able to assess whether other roll actions and entirely different
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Figure 6.7: (a) The input is a video x with the weak label (a,m) for the action
and adverb respectively. (b) The aim is to learn a joint video-text embedding
space for adverb and video retrieval where the embedded video (blue) and action-
adverb text representation (yellow) are close. (c) Adverbs are learnt as action
modifiers which are transformations in the embedding space. (d) The visual
representation of the relevant video parts, f ′(x, a) is embedded using multi-head
scaled dot-product attention where the query is a projection of the action em-
bedding g(a).

actions from different videos have been performed quickly among other adverbs.

The joint video-text embedding space learnt to achieve this goal is shown in Figure 6.7(b).

Section 6.3.1 reviews how joint video-text embeddings are typically learnt from this type

of input and introduces notation for the rest of this chapter.

Two prime challenges exist in learning the embedding space for the problem of weakly-

supervised adverb retrieval. The first is being able to disentangle the representation of

the adverb from the action, allowing the method to learn how the same adverb applies

across different actions. In Section 6.3.3 action modifiers are introduced, represented as

transformations in the embedding space, which allows this disentanglement by learning

one action modifier per adverb, as in Figure 6.7(c).

The second challenge is learning the visual representation from the relevant parts of

the video in a weakly-supervised manner, i.e. without annotations of temporal bounds.

This challenge is addressed in Section 6.3.4 with a weakly-supervised embedding function

which utilises multi-head scaled dot-product attention. This uses the text embedding of

the action as a query to attend to relevant video parts, as shown in Figure 6.7(d).

Finally, Section 6.3.5 describes how the model learnt from the previous sections can be

used for video-to-adverb and adverb-to-video retrieval.
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6.3.1 Learning an Action Embedding

Previous works aiming for action retrieval have learnt a joint video-text embedding [109,

202, 205]. In these video-text embedding spaces, video clips and text which correctly

describes the videos, e.g . a caption or an action’s verb, are close together and video-text

pairs with low relevance are far apart. This chapter follows a similar approach for the

base model. Specifically, given a set of video clips x ∈ X with corresponding action

labels a ∈ A, the goal is to obtain two embedding functions, one visual and one textual,

f : X → E and g : A→ E such that f(x) and g(a) are close in the embedding space E

and f(x) is distant from other action embeddings g(a′).

These functions f and g can be optimised with a standard cross-modal triplet loss:

Ltriplet = max(0, d(f(x), g(a))− d(f(x), g(a′)) + β) s.t. a′ 6= a (6.1)

where a′ is an action different to a, d is the Euclidean distance function and β, set to 1

in all experiments.

The GloVe [140] embedding of the verb describing the action is used for g(a), this process

is described in Section 6.3.2. Section 6.3.4 describes how f(x) is replaced by f ′(x, a) to

allow for weak supervision.

6.3.2 The Text Embedding Function

Global Vectors (GloVe) [140] is an unsupervised method for learning vector representa-

tions of words. The aim is to have similar words clustered together in the space. It uses

global word-word co-occurrence statistics to guide this learning. First, probabilities of

two words appearing in the same context are calculated, e.g . P (ice|water). The aim is

then to learn vectors wi and wj as points in the embedding space E to represent the ith

and jth word in the corpus such that the following is true:

F (wi, wj, w̃k) =
P (k|i)
P (k|j)

(6.2)

where w̃k is a separate context word vector and F is the function which generates the vec-

tors. Predicting the co-occurrence probabilities, rather than the probabilities themselves,

allows the model to separate whether two words co-occur because they are related or be-

cause a word is used often. For instance, P (solid|ice)
P (solid|steam)

will be high as ice is a solid whereas

steam is not. In GloVe, F is modelled with weighted least squares regression.

A word embedding method is used for the text embedding function g(·) in the proposed
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model instead of a one-hot encoding as the word embedding should aid generalisation.

Related actions should be close in the embedding space, therefore the video embedding

function will be able to share information for similar actions. GloVe was chosen as it

has successfully been used for many other visual-text embedding problems including the

related problem of learning attributes of objects [123], although other word embedding

methods such as Word2Vec [112] or FastText [53] would also be suitable.

6.3.3 Modelling Adverbs as Action Modifiers

While actions exist without adverbs, adverbs are by definition tied to the action, and

only gain visual representation when attached to one. Although adverbs have a similar

effect on different actions, the visual representation is highly dependent on the action.

Therefore, following prior work from [123] on object-attribute pairs, adverbs are modelled

as learned transformations in the video-text embedding space E (Section 6.3.1). As these

transformations modify the embedding of the action they are named action modifiers.

One action modifier Om is learnt for each adverb m ∈M , such that

Om(z) = Wmz (6.3)

where z is any point in the embedding space E and Om : E → E is a learned linear

transform with weight matrix Wm. In Section 6.4, other geometric transformations:

fixed translation, learned translation and non-linear transformation are tested. Each

transformation Om can be applied to any text representation Om(g(a)) or video rep-

resentation Om(f(x)) in E to add the effect of the adverb m. Since the function is

invertible, O−1m could also be applied to any text or video representation in E to remove

the effect of the adverb m.

A video x ∈ X, labelled with action-adverb pair (a,m), contains a visual representation

of the adverb-modified action. Thus, the aim is to embed f(x) close to Om(g(a)), while

ensuring different videos x′ displaying different actions a′ or adverbs m′ are embedded

far away. Note that this is equivalent to embedding the inverse of the transformation

O−1m (f(x)) near the action g(a). The embedding function f(·) is learnt jointly alongside

action modifiers Om ∀m ∈M using two triplet losses. One focuses on the action:

Lact = max(0, d(f(x), Om(g(a)))− d(f(x), Om(g(a′))) + β) s.t. a′ 6= a (6.4)

where a′ is a different action and d and β are the distance function and margin as in
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Section 6.3.1. The second loss function focuses on the adverb, such that:

Ladv = max(0, d(f(x), Om(g(a)))− d(f(x), Om(g(a))) + β) (6.5)

where m is the antonym of the labelled adverb m, e.g . when m = quickly, the antonym

m = slowly. The negative in Ladv is restricted to only the antonym because adverbs are

not mutually exclusive. Furthermore, the adverb annotations are not exhaustive as the

instructor in the video only notes the key adverbs relevant to succeeding in the task. For

example, a video labelled as slice quickly does not preclude the slicing from also being

done finely. However, it surely has not been done slowly. The effect of this choice is

demonstrated in Section 6.4.

The overall loss is then the sum of the action and adverb focussed losses:

L = Lact + Ladv (6.6)

6.3.4 Weakly-Supervised Embedding

All prior works which learn attributes of objects from images [23, 66, 115, 123, 124] utilise

fully annotated datasets, where the object the attributes relate to is the principal object

of interest in the image. In contrast, this chapter aims to learn action modifiers from

video in a weakly-supervised manner. The input is untrimmed videos containing multiple

consecutive actions. To learn adverbs, the visual representation needs to exclusively be

from video parts relevant to the action which the adverb applies to (e.g . roll in the

example in Figure 6.7). This chapter proposes using scaled dot-product attention [185],

where the embedded action of interest acts a ‘query’ to identify relevant video parts.

The scaled dot-product attention uses keys, values and queries. The motivation for this

comes from retrieval systems. If you wanted to search for some video on YouTube you

would type in a query. The search engine would then map the query against a set of

keys (e.g . video title, description) associated with the videos (values) in the database.

For the weakly-supervised embedding in this chapter, the keys are a set of video segments

from a video which can be queried with the action of interest. The result of this is the

video segments (also the values) containing the relevant action.

For each video x, a temporal window of size T is used, containing video segments

{x1, x2, ..., xT}. This is centred around the timestamp of the narrated action-adverb pair.

Starting from the visual representation of all segments f(x) = {f(x1), f(x2), ..., f(xT )},
where f(·) is an I3D network, the aim is to learn to embed the visual features relevant
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to the action a. This embedding is performed by the function f ′(x, a). First, f(x) is

projected into lower dimensional keys K and values V using linear projections:

K = WKf(x); V = W V f(x) (6.7)

The query Q = WQg(a) is set to be a projection of the action embedding, to weight

video segments by their relevance to that action. The attention weights are obtained

from the dot product of the keys K and the action query Q. These then pool the values

V to obtain a single feature vector per video. Specifically:

H(x, a) = softmax

(
(WQg(a))>WKf(x)√

T

)
W V f(x) (6.8)

where H(x, a) is a single attention head. Mapping videos f(x) into separate keys K and

values V means information necessary to identify the relevant segments can be present

in K without being in V , which is used to produce the final embedding used for adverb

retrieval.

As explained in Chapter 4, a single attention head will tend to focus on a single aspect of

the videos. Therefore, multiple attention heads are trained to give the attention multiple

representation subspaces and allow it to jointly attend to the multiple pertinent parts of

an action in a video. The final video embedding function is:

f ′(x, a) = WH [H1(x, a), ..., Hh(x, a)] (6.9)

where WH projects the concatenation of the multiple attention heads into the embedding

space. Each of the h attention heads Hi(x, a) learns its own separate weights: WQ
i ,

WK
i , W V

i . It is important to highlight that these weights are trained jointly with the

embedding space E so that f ′(x, a) is used instead of f(x) in Equations 6.4 and 6.5.

6.3.5 Inference of Adverbs

Once trained, the model can be used to evaluate cross-modal retrieval of videos and

adverbs. For video-to-adverb retrieval, from a video query x and the associated narration

action a, the goal is to estimate the most relevant adverb(s) m. For example, from a

video with the narration “slice the cucumber...” the aim is to determine the manner in

which the action slice was performed. The learned function f ′(x, a) is used to embed

the parts of the video x relevant to the action a in E. Adverbs are then ranked by the

distance from this embedding to all modified actions ∀m : Om(g(a)).
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For adverb-to-video retrieval, the query is an action-adverb pair (a,m), e.g . slice finely,

embedded as Om(g(a)). The distance from this text representation to all relevant em-

bedded videos ∀x : f ′(x, a) is calculated to find the nearest videos. For both cases, this

allows the action a to be used as the query in the weakly-supervised embedding so as to

attend to the relevant video parts.

6.4 Experiments and Results

This section performs experiments on the method proposed in Section 6.3 on the data

collected in Section 6.2. First, the implementation details of the method are described in

Section 6.4.1, followed by the metrics used for evaluation in Section 6.4.2. Quantitative

and qualitative results are then presented in Sections 6.4.3 and 6.4.4 respectively and

the contribution of the different model components is evaluated in Section 6.4.5.

6.4.1 Implementation Details

Video Features. For consistency in frame rate, videos are first re-sampled to 25

frames per second. Both motion and appearance features are extracted from an I3D

network [18] before the output layer. Networks for both modalities were first pre-trained

on ImageNet[32] and then on Kinetics-400 [79]. The appearance network takes RGB

images and the flow network uses grey-scale images from the TV-L1 optical flow algo-

rithm [211]. Both networks use 16 frame segments with frames re-scaled to a height of

256 pixels and centre cropped to obtain 224× 224 pixel images. The feature extraction

results in a 1024 dimensional vector for both modalities, these are then concatenated

to create a 2048 dimensional vector. One feature vector (f(xi)) is extracted per second

as in [218], for T = 20 seconds around the weak timestamp for both training and test

videos.

Text Features. Action embeddings are initialised with a 300 dimensional GloVe [140]

vector corresponding to the action’s verb. The GloVe model used was pre-trained on the

Wikipedia and Gigaword corpora.

Architecture Details. In all experiments, the embedding space E is 300 dimensional,

the same as GloVe word vectors. The weights Wm of the action modifiers Om (Equa-

tion 6.3) are initialised with the identity matrix so the transformation begins with no

effect. For the scaled dot-product attention (Equation 6.8), Q is of size 75×1 and K and

V are of size 75×T . Unless otherwise stated, 4 attention heads are used in f ′(x, a).
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Training Details. All models are trained with the Adam optimiser [80], with a batch

size of 512 and learning rate of 10−4, for 1000 epochs. To aid with disentangling the

actions and adverbs, the model first uses Ltriplet (Equation 6.1) for 200 epochs to learn

a good action embedding space before the action modifier transformations Om are in-

troduced. Once introduced the weights of the action modifiers, Wm (Equation 6.3) are

learned at a slower rate of 10−5.

6.4.2 Evaluation Metrics

Mean Average Precision (mAP) is reported for video-to-adverb and adverb-to-retrieval.

For video-to-adverb retrieval, given a video and the narrated action, the relevance of

the 6 adverbs are ranked. There are two settings for this metric: Antonym and All.

In All the rank of all 6 adverbs are considered, this indicates which adverbs the model

predicts as being relevant and present in the narrated action of the instructional video.

In Antonym the retrieval is restricted to the only ground-truth adverb and its antonym.

This metric better represents the available labels as the adverbs in the narrations are

not exhaustive. To clarify, a video may be narrated with cut coarsely, meaning the cut

was performed coarsely rather than finely. However, the narration gives no indication of

whether the cut was performed quickly or slowly. Therefore, it is particularly important

that the correct adverb be retrieved before its antonym. In video-to-adverb retrieval

with the ‘Antonym’ setting there are only two possible adverbs to retrieve, therefore

Precision@1 (P@1) is reported, which is the same as binary classification accuracy.

For adverb-to-video, given an adverb query (slowly) the method should rank the videos

based on how much they display this adverb. To achieve this, videos are embedded by

f ′(x, a) with their narrated action a (e.g . put). These videos are then ranked by the

distance of their embedding to the embedding of the queried adverb with the ground-

truth narrated action (e.g . put slowly). With the All setting all videos are ranked. In

the Antonym setting only videos with the labelled with the query adverb or its ground-

truth are ranked. In this case a perfect average precision score of 100 would indicate

all videos labelled slowly are retrieved before all videos labelled quickly. This method

of ranking allows for an overall rank per adverb, rather than a rank per action-adverb

pair. While a rank per action-adverb pair would also be interesting, a rank per adverb

allows the model to be compared to baselines which do not have knowledge of the action

and prevents models from trivially succeeding in the case where certain actions are never

narrated with the antonym.

Video-to-adverb with the ‘Antonym’ setting is the most relevant metric to skill determi-

nation as it could assess whether an action has been done as instructed. However, the
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‘All’ setting is also useful; a ranked list of relevant adverbs could be used to indicate how

an action should be done from visual demonstration when verbal or written instructions

are not available. Adverb-to-video retrieval is not directly related to assessing skill, but

it could be used to retrieve demonstrations for instruction or feedback.

6.4.3 Comparative Results

Since the method described in Section 6.3 is the first to learn from adverbs in instructional

videos, there are no existing baselines. The most similar existing works are those that

learn attributes of objects in images, therefore a selection of these works are adapted for

comparison alongside several naive baselines. In this adaptation, actions replace objects

and adverbs replace attributes. The following approaches are compared to:

• Chance: Returns a random order of items for a given query. This is included as

a lower bound.

• Classifier-SVM: A Linear Support Vector Machine (SVM) which trains a binary

one-vs-all classifier per adverb. This is analogous to the Visual Product baseline

used in [115, 123]. In video-to-adverb, adverbs are ranked by classifiers’ confidence

scores. In adverb-to-video the confidence of the corresponding classifier is used to

rank videos.

• Classifier-MLP: A 6-way Multi-Layer Perceptron (MLP) consisting of two fully

connected layers. For video-to-adverb, adverbs are ranked by the confidence score

of the corresponding output. For adverb-to-video videos are ranked by each video’s

score from the output corresponding to the query adverb.

• RedWine [115]: This method first learns a linear SVM classifier per action and

adverb and then learns a transformation network to compose the component clas-

sifiers into a classifier for the combination of action and adverb. This is done by

learning a projection from the component classifier weights to the feature space of

the extracted visual features.

• LabelEmbed: This is a baseline from [115]. It is similar to RedWine, but com-

poses word vector representations instead of SVM classifier weights. For the word

vector representations, the pre-trained GloVe embeddings described in Section 6.3.2

are used.

• AttributeOp [123]: This method projects actions into an embedding space and

learns attributes (adverbs) as linear operators on the action embeddings as de-

scribed in Section 6.3.3. The authors also propose several regularisers for the
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embedding space inspired by linguistic properties of adjectives. These linguistic

properties can also apply to adverbs. Results for this method are reported with the

auxiliary and commutative regularisers, as this is the best performing combination

of regularisers. The auxiliary regulariser adds an classifier for actions and adverbs

to ensure neither is lost in the composition, while the commutative regulariser en-

sures the order adverbs applied in can be swapped (i.e. cut quickly and finely is

the same as cut finely and quickly).

Since RedWine, LabelEmbed and AttribtueOp were designed to retrieve attributes in im-

ages, they have no temporal aspect nor do any of these methods have any form of spatial

attention. Therefore, the image representation is replaced by a uniformly weighted visual

representation of the video segments. Similar to the method presented in this chapter,

results for these methods are also reported with the action given in testing. This is

referred to as the ‘oracle’ evaluation in [123]. Furthermore, for a fair comparison, only

the antonym is used as the negative in each method’s loss, as done in Equation 6.5.

Comparative results are presented in Table 6.5. The method presented in this chapter

outperforms all baseline methods for video-to-adverb retrieval, both when comparing

against all adverbs and when restricting the evaluation to antonym pairs. It can be seen

that AttributeOp is the best baseline method, generally performing better or comparably

to RedWine and LabelEmbed. The two latter methods work on a fixed visual feature

space, so while these methods are less prone to over-fitting, they are prone to errors

when the features are non-separable in that space. As will be shown in Section 6.4.4, it

is not easy to distinguish between adverbs from the initial I3D feature space, therefore

these methods struggle. Table 6.5 also shows that LabelEmbed performs better than

RedWine across all metrics, demonstrating that GloVe features are better representations

for actions and adverbs than SVM classifier weights.

The only metric for which the method presented in this chapter does not offer a sig-

nificant improvement over baselines is adverb-to-video retrieval with the ‘All’ setting.

AttributeOp is able to better retrieve videos containing the most likely action for an

adverb. For instance, with the query finely AttributeOp retrieves the majority of videos

which contain a cut action before any other action. The method presented in this chap-

ter is able to isolate the most important video segments to better separate adverbs from

their antonyms, i.e. retrieve more cut finely videos before cut coarsely. However, by

not performing this separation Attributes as Operators is more successful at learning

correlations between videos and likely adverbs.
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Method
video-to-adverb adverb-to-video

Antonym All Antonym All

Chance 50.0 40.8 51.1 17.0

Classifier-SVM 60.5 53.2 56.3 26.4

Classifier-MLP 68.5 60.2 60.3 30.4

RedWine [115] 69.3 59.4 59.5 29.0

LabelEmbed [115] 71.7 62.1 61.8 29.7

AttributeOp [123] 72.8 61.2 59.7 35.0

This method 80.8 71.9 65.7 32.9

Table 6.5: Comparative Evaluation. Best performance in bold and second best
underlined. Results are reported for both video-to-adverb and adverb-to-video
retrieval when results are restricted to the adverb and its antonym (Antonym)
and when unrestricted (All).

Learning one modifier per adverb targets generalisability, therefore it is useful to ex-

amine how the proposed model does for action-adverb pairs with few occurrences in

training. The proposed model achieves 64 P@1, compared to 57 P@1 for AttributeOp,

on action-adverb pairs with less than 10 training samples. While the proposed method

does improve few-shot performance there is still a large gap between few and many-shot

pairs, which obtain 84 P@1.

6.4.4 Qualitative Results

This section first looks at qualitative video-to-adverb retrieval results with a demonstra-

tion of the temporal attention. Then the learnt embedding space is examined.

Video-to-Adverb Retrieval. Figure 6.8 shows attention weights for several action

queries alongside the predicted actions and adverb (closest in the embedding space)

when using the ground-truth action as the query in the scaled dot-product attention

(see Section 6.3.4). From Figure 6.8, it is evident that the scaled dot-product attention

is able to successfully attend to key segments relevant to each action query. This is true

even for relatively rare actions in the dataset, such as hold or move. It is also clear that

the model attends to different sets of segments unique to each action query and that

all queries ignore segments which do not contain any action. With the ground-truth

narrated action as the query, the model is able to successfully recognise the action from

the embedding of the video (as shown by the ‘predicted actions’) and is therefore able
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Figure 6.8: Temporal attention values from several action queries. The inten-
sity of the colour indicates the attention value. Recall that the narrated action
is used to weight the relevance of the video segments. Using this, the top-5
predicted actions, as well as the predicted adverb, are displayed for all cases.

to predict the correct adverb.

The fifth example demonstrates the two main outcomes when an action is not present in

the video. In many cases the distribution of attention values will be close to uniform, as

with bend. Alternatively, the method will attend to the action segments which are most

similar to the queried action. For instance, with dip, the method attends to segments in

the latter part of the video as the scissors dip into the kimchi to cut it.

However, the results in Figure 6.8 also highlight some limitations of the method. In some

cases the scaled dot-product attention is unable to locate the segments relevant to the

narration. This occurs in both the fifth and sixth examples. In the fifth example, the

method mainly attends to the cutting of the pork, rather than the kimchi. In the sixth
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Figure 6.9: Visualisation of the feature space for all actions before and after
training. Colours indicate the different actions.

video, the method detects the removal of lug nuts and taking of the tire as take actions,

but not the removal of the jack in the penultimate segment. Even if the method picked

up on these segments it could still be problematic as different adverbs may apply to

each instance of the queried action. This highlights the need for the inclusion of further

context in future work. In some cases, multiple actions occur simultaneously (e.g . mix

and add in the second example). If different adverbs apply to these co-occurring actions

it could make it difficult for the model to identify the correct adverb, even if it correctly

attends to the relevant video segments.

Embedding Space. As Section 6.3 argues, it is necessary to learn a good action

embedding in order to learn the action modifiers which represent how an adverb effects an

action. Figure 6.9 shows t-SNE projections of the full embedding space before (i.e. from

I3D features) and after training. Before training, the feature space does not separate

either actions or adverbs well. After training, the overall feature space shows good

separation of the actions. This is expected as the actions are dominant in the visual

signal; slice coarsely and slice finely actions will look more visually similar than slice

coarsely and spread coarsely.

To examine whether the embedding space has a good separation of adverbs, two sample

actions are visualised separately. Figure 6.10 shows the embedding of all videos narrated

with the action cook before and after training. Figure 6.10(a) highlights the adverb-

antonym pair completely-partially, while Figure 6.10(b) highlights quickly-slowly. Points

corresponding to other adverbs are faded out for ease of viewing. In each case, the embed-

ding space shows the training successfully separates the adverb and its antonym. This is
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Figure 6.10: Comparison between the feature space for the action ‘cook’ before
and after training highlighting antonym pairs. In (a) the ‘completely’/‘partially’
pair is highlighted with the other adverbs faded out. In (b) ‘quickly’ and ‘slowly’
are highlighted.
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Figure 6.11: Comparison of the features spaces before and after training for
the action ‘spread’. All adverbs are shown.

also true for less frequent actions; Figure 6.11 demonstrates the embedding space for the

action spread. Examples of embedded segments are shown alongside the embedding in

both figures, with six videos embedded correctly within the corresponding ground-truth

and two incorrect predictions: cook slowly→quickly and spread finely→coarsely.

With closer inspection of Figures 6.10 and 6.11, it can be seen that while adverb-antonym

pairs are separated, there is still a significant amount of overlap between other adverbs.

This is because the adverbs are not mutually exclusive and multiple adverbs can be ap-

plicable to a single action. For instance, in Figure 6.10 the top-left example demonstrates

the spread being done coarsely as well as completely, hence it is embedded close the text

embedding of coarsely.

6.4.5 Ablation Study

Having presented results on all metrics in comparison to baselines in Section 6.4.3, this

section studies the impact of different model components. These ablation experiments

focus on video-to-adverb retrieval using the Antonym P@1 metric, as this allows ques-
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tions like “was the cut performed quickly or slowly” to be answered and is thus the metric

most relevant for skill determination. The ablation studies focus on various aspects of

the method including the temporal attention, the action modifier transformation Om(·),
the contribution of the loss functions, the length of the video (T ), the contribution of

the different modalities and the choice of query Q in the attention.

Temporal Attention. In Table 6.6, the proposed multi-head scaled dot-product at-

tention approach (Section 6.3.4) is compared with alternative approaches to temporal

aggregation and attention. Since the proposed scaled dot-product attention is reliant on

a good action embedding, action retrieval results (mAP) are reported alongside video-

to-action P@1. That is, given the embedding of the video f ′(x, a) queried by the ground-

truth action, all actions in the embedding ∀a : g(a) are ranked by their distances to the

visual query and the rank of the correct action is evaluated.

It is important to note that the proposed method does not aim for action retrieval as it

assumes knowledge of the ground-truth action and the embedding of that ground-truth

action is used to calculate the importance of video segments. However, this metric does

give an indication of the quality of the weakly-supervised embedding space. Results are

compared to:

• Single: uses only a one-second clip at the timestamp.

• Average: uniformly weights the T features.

• Class-agnostic Attention: is a widely used form of attention [101, 125], similar

to the attention filters used in Chapter 4. It calculates attention values per segment

with two fully connected layers, i.e. f ′(x, a) = softmax(w1 tanh(W2f(x)))W3f(x).

• Class-specific Attention: a version of the above with one attention filter per

action class.

• This method w/o two-stage optimization: the proposed attention without

the first 200-epoch stage of learning only actions.

• This method: the proposed attention as described in Section 6.3.4.

Table 6.6 demonstrates superior performance of the proposed method for the learning

of action embeddings and, as a consequence, better learning of action modifier trans-

formations. This demonstrates that adverbs are highly contextual and require a good

grounding and knowledge of the relevant action in order to determine how the action

is performed. These results also demonstrate the challenge of weak-supervision, with

video-to-action retrieval only performing at 24.6 mAP when considering the single second
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Method Action Adverb

Single 24.6 70.5

Average 25.7 71.6

Class-agnostic attention 23.5 70.8

Class-specific Attention 40.1 72.8

This method w/o two-stage optimization 58.6 77.4

This method 69.2 80.8

Table 6.6: Comparison of temporal attention methods. Video-to-action re-
trieval mAP and video-to-adverb retrieval P@1 are reported.

surrounding the narrated action. This improves to 69.2 with the proposed method.

There is a small improvement when including more video segments (Average) than the

one centred around the weak-timestamp (+1.1 P@1). However, it is clear how important

it is to attend to the relevant segments within the temporal window of size T as these

results are still below the final performance.

The class agnostic attention performs poorly, with results comparable to ‘Single’ and

‘Average’. The appearance of each action is significantly different. While a class agnostic

attention may be able to distinguish between no action occurring and an action taking

place, it is not capable of attending to the desired action when faced with multiple

confounding actions in the video clip. A significant improvement in the action embedding

can be seen with the ‘Class-specific attention’ (+16.6 mAP) which also reflects in the

adverb results (+2.0 P@1), however this over-fits for rare actions.

The initial step of only optimising the action embedding for the first 200 epochs demon-

strates how important learning a good action representation is to learning adverbs. This

sole change improves the final result by 3.4 P@1. The error of the adverb is inherently

tied to the error of the action. Without being able to correctly identify the relevant

action it is difficult to determine the adverbs which pertain to this action, as the visual

appearance of an adverb depends so heavily on the action it applies to. By learning a

better action embedding initially, the proposed attention is able to better identify video

segments relevant to the queried action and thus relevant to the adverb.

Action Modifier Representation. Table 6.7 examines different representations for

the action modifiers Om(·) (Equation 6.3). A fixed translation from the GloVe repre-

sentation of the adverb (m), which is not learned, is compared to three learned repre-

sentations. First, a learnt translation vector bm initialised from the GloVe embedding
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Om(z) Dimension Learned P@1

z + GloVe(m) 300D 73.5

z + bm 300D X 74.9

Wmz 300× 300D X 80.8

Wm2ReLU(Wm1z + bm1) 2× 300× 300D X 74.2

Table 6.7: Comparison of action modifier representation Om(·). The linear
transformation choice (Wmz) clearly improves results.

is used. Second, is the representation from Equation 6.3 used in the results above: a

2D linear transformation with matrix Wm. Third, a non-linear transformation is learnt,

implemented as two fully connected layers, the first with a ReLU activation.

Results show the linear transformation clearly outperforms a vector translation and the

non-linear transformation. While learning an adverb translation does improve results

over the static GloVe representation (+1.4 P@1), the translation vector does not have

enough capacity to represent the complexity of the adverb. On the other hand, the

non-linear transform is prone to over-fitting, particularly with action-adverb pairs which

have a small number of examples.

To understand the success of the linear transformation it is also important to test the

impact of the initialisation. The weights of the transformation (Wm) are initialised with

the identity matrix, so the action modifiers initially have no effect in the embedding

space. With a more standard initialisation of Kaiming Uniform [57], as used by fully

connected layers in Pytorch [137], the performance drops to 80.2 P@1. This is a rela-

tively small difference, indicating the initialisation method is not crucial to success, but

initialising the adverbs such that they begin with no effect it is marginally helpful.

These results test the type of transform the action modifier performs on points in the

video-text embedding space. However, this assumes having a transform per adverb which

is shared between actions is beneficial. Table 6.8 tests this hypothesis by investigating

how learning an independent embedding per action-adverb pair performs. This is still

performed with the same scaled dot-product attention and initially learning the action

embedding for 200 epochs to keep the conditions as close as possible. The adverbs are

not learned with translation matrices for this experiment as it would be unreasonable

to learn a 300× 300 transformation per action-adverb pair and would most likely over-

fit. Thus, learning a translation vector bm per adverb m is tested against learning an a

translation vector ba,m per action-adverb pair (a,m).
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Initialisation Om(z) P@1

Zero z + ba,m 57.0
GloVE z + ba,m 71.3

GloVE z + bm 74.9

Table 6.8: Comparison of a learnt action modifier representation when shared
across actions (bm) and when learnt separately for which action-adverb pair (ba,m)

Table 6.8 shows that by learning a separate adverb transformation per action-adverb

pair causes a significant drop in performance (3.6 P@1), even when initialising all in-

stances of an adverb translation from a common GloVE embedding. In many cases the

adverbs stay close to the GloVE embedding the translation vector is initialised with,

meaning the adverbs are still mostly shared between different actions. Without the

GloVe initialisation the performance drops further to 57.0 P@1.

Loss Functions. In this section the need for the two separate loss functions Lact
(Equation 6.4) and Ladv (Equation 6.5) is evaluated, as well as the impact of the negatives

used. As an alternative approach, a single loss function is used where the negative

contains a different action and/or the antonym adverb. Specifically:

Lcomb = max(0, d(f(x), Om(g(a)))− d(f(x), Om′(g(a′))) + β) (6.10)

s.t.(a′ 6= a and m′ = m) or (a′ = a and m′ = m) or (a′ 6= a and m′ = m)

where m is still the antonym of the narrated adverb m.

As shown by Table 6.9, this performs worse by 3.7 P@1. The worse performance is due

to the action dominating in the sampling of negative triplets. The same improvement

could probably be achieved by weighting the sampling of negative action-adverb pairs,

however two separate loss functions is a more intuitive solution. An alternative would

be to have only the case where both the action and adverb are negative, however this

means the model could effectively ignore the adverb when making the modified action

text embedding closer than the modified text embedding of another action.

Using any different adverb (m′ ∈ M \ m) as opposed to only the antonym m in Ladv
(Equation 6.5) also results in worse performance. As many of the adverbs are not

mutually exclusive, this version of the loss causes the model to over-fit to the narrated

adverbs thereby rejecting any other correct but unlabelled adverbs. With this version of

the loss there is no longer overlap between different adverbs in the embedding space as

shown in Figures 6.10 and 6.11.

157



6.4 Experiments and Results

Loss m′ P@1

Lcomb m′ = m 77.1
Lact + Ladv m′ ∈M \m 78.2

Lact + Ladv m′ = m 80.8

Table 6.9: Ablation of the loss function. This demonstrates need for two sep-
arate loss functions, one focussing on the action the other on the adverb, over
a single combined loss function. It also shows using the antonym m is the most
effective choice for the negative adverb m′.

Figure 6.12: Performance as T increases. Blue (axis and plot) shows video-to-
action retrieval mAP while red shows video-to-adverb retrieval with Antonym
P@1.

Effect of T . The experiments thus far have been tested with a video snippets extracted

from 10 seconds before the narration timestamp to 10 seconds after, i.e. T = 20. When

evaluating the proposed method, particularly the scaled dot-product attention, it is

important to verify that this length of video is necessary. The temporal attention ablation

showed that this was a better alternative than using only a single second around the

narration timestamp; here intermediate and succeeding values are investigated.

Figure 6.12 shows the video-to-adverb ‘Antonym’ performance alongside video-to-action

mAP for T = {1, 3, 5, 15, 20, 25, 30, 35, 40}. As shown in Section 6.2, many actions are

long and there are many cases where the action is not well aligned with the narration.

Therefore, despite a higher proportion of confounding actions with larger T , videos are

also more likely to contain the full length of the relevant action. The embedding function

f ′(x, a) is able to ignore other actions in the video, to a point, and successfully learn to

attend to the relevant parts given the query action, resulting in better performance with

T = {20, 25, 30}. The performance does degrade for T > 30. After this point is it likely

the additional segments only contain confounding actions, as indicated by the decrease

in video-to-action mAP performance.
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Figure 6.13: Video-to-adverb retrieval mAP per adverb with different modal-
ities. Left are results with the ‘All’ setting, right display results with the
‘Antonym’ setting.

Effect of Different Modalities. Figure 6.13 shows the effect of different modalities on

the results per adverb for ‘All’ (left) and ‘Antonym’ (right). Firstly, it can be observed

that overall the inclusion of both RGB and Flow is better than either modality sepa-

rately (+0.7 mAP and +1.6 mAP respectively with ‘All’). However, modalities perform

differently across individual adverbs. Finely is retrieved significantly more successfully

with RGB than with Flow in the ‘All’ setting, although the addition of Flow in ‘Both’

does improve the performance of this result significantly (+11.2 mAP). Unsurprisingly,

quickly and slowly also benefit from the inclusion of Flow features alongside RGB (+2.6

and +2.4 mAP respectively).

The results do highlight a drawback of the proposed method in that it is more likely to

predict the adverbs with better support in training.

Choice of Q. As explained in Section 6.3.4, Q is the query in the scaled dot-product

attention, which is used to attend to the relevant parts of the video for weakly-supervised

embedding. The attention is calculated by the compatibility of this query Q with the

keys K (a linear projection of the video segment features), therefore the choice of Q is

integral to the method. This query is set to a linear projection of the embedding of the

action, WQg(a) (Equation 6.8) under the intuition that the adverb is highly dependent

on the action, therefore it is necessary to attend to action-relevant segments in order

to be able to retrieve the correct adverb(s). Table 6.10 tests several alternatives to this

choice, including incorporating the adverb into the query. Note that for this ablation

the two-stage optimisation of only learning actions in the first 200 epochs is not used,

as this is specific to using only the action and not the adverb in the query Q. Thus, the

performance of g(a) matches that of 77.4 in Table 6.6.

159



6.4 Experiments and Results

Q = P@1

Action
WQg(a) 77.4

WQOneHot(a) 73.6

Adverb
WQGloVe(m) 70.2

WQVec(Wm) 73.1

Both WQOm(g(a)) 72.8

Table 6.10: Comparison of the choice of query, Q, in the proposed scaled dot-
product attention. The first column denotes whether the choice of Q relates to
the action a, the adverb m or both.

First, an alternative representation of the action is compared: a one-hot vector repre-

senting the action (OneHot(a)). From Table 6.10 it is evident the action embedding g(a)

performs better as a query.

Second, querying with the types of adverb instead of the action is tested. A single

adverb from each antonym pair is used (e.g . ‘slowly’/‘quickly’→‘quickly’). This offers

the attention an understanding of the type of adverb to be retrieved, so as to pick video

segments relevant to this action manner. Two representations for the adverb m are

tested: the GloVe representation GloVe(m) and a flattened representation of the learned

action modifier weights Vec(Wm). Again, while this can allow the method to focus

on segments relevant to the type of action manner, using either action representation

performs better than solely querying with the adverb for both representations.

Although it can be concluded that the adverb on its own in not useful, it is possible for

it to be useful in combination with the action. Therefore, the final test is the full action-

adverb embedding Om(g(a)), again with a single adverb from each antonym pair (e.g .

slowly/quickly→quickly). This shows a drop in performance compared to using only

the action’s embedding alone. This is likely related to the adverbs not being mutually

exclusive.

Number of Attention Heads. Thus far the proposed scaled dot-product attention has

used h = 4 attention heads (Equation 6.9). Multiple heads are used to allow the attention

to jointly attend to the different pertinent parts of a video. This section investigates how

crucial multiple attention heads are and how many heads are needed.

Figure 6.14 shows video-to-adverb P@1 alongside video-to-action mAP for different num-

bers of attention heads h. There is a clear improvement from incorporating multiple
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Figure 6.14: Comparing the number of attention heads. Blue shows video-to-
action retrieval mAP, while red shows Antonym P@1 video-to-adverb retrieval.

heads in the scaled dot-product attention: 4 heads improves the result by 10.8 P@1 over

a single attention head. Despite the video-to-action mAP increasing with more than 4

attention heads, the video-to-adverb result plateaus. It is likely with 4 heads the method

can attend to enough action relevant segments to determine the adverb and further seg-

ments which benefit action retrieval do not aid retrieval of the correct adverb.

Comparison with Action Localisation. This chapter has explained how a weakly-

supervised embedding containing action modifiers can be learnt by attending to action

relevant segments. So far it has been established that the proposed scaled dot-product

attention is better than alternative temporal attention strategies (Table 6.6) and that

knowledge of the action is necessary to attend to relevant video segments in the weakly-

supervised embedding (Tables 6.6 and 6.10). Since the success of the attention hinges

on identifying key segments relevant to the action, this section tests whether off-the-

shelf weakly-supervised action localisation methods can be used instead of the proposed

attention, to locate key segments before learning action modifiers.

One disadvantage of the proposed method is that no component deals with the noise in

the data. As mentioned in Section 6.2 in around 44% of cases the narrated action-adverb

pair is not visually present in the T second window around the weak timestamp. Our

method uses all data in training, including these noisy clips. With action localisation

methods there is potential for these noisy clips to be ignored if there are no action

proposals for the narrated action in the clip.

Published code is used for two state-of-the-art weakly-supervised action localisation

methods:

• W-TALC [138]: uses Multiple Instance Learning (MIL) in combination with a

Co-Activity Similarity loss to temporally localise actions given video level labels.

MIL models video clips as bags, where a positive bag (i.e. video clip labelled with
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the action) has one or more positive instances (i.e. segments containing the labelled

action) and negative bags have no positive instances. The Co-Activity Similarity

loss identifies correlations between videos containing the same action.

• CMCS [96]: aims to model the completeness of actions and to separate action

instances from their surrounding context. The network contains multiple branches

which are forced to focus on distinct video segments to model completeness. To sep-

arate action instances from surrounding context, negative training samples which

contain little motion are used.

For both of these methods the same I3D features and the same T = 20 second temporal

window used. Each method is fine-tuned on training set. Action proposals are extracted

from each video in the training and test set if and only if the action proposal is of the

same class as the narrated action. For the training set, only proposals with a confidence

score greater than 0.5 are used. For the test set, the highest scoring action proposal

of the narrated action is taken as the test set only contains videos where the narrated

action has been confirmed to be present.

First, the output of these methods with an adverb classifier (Classifier-MLP as in Sec-

tion 6.4.3) is tested, thereby completely replacing the proposed method with off-the-shelf

components. For this experiment, the features contained within extracted action pro-

posals are average pooled before being used to train the MLP adverb classifier. Results

are presented in Table 6.11 (Attention=‘Avg’ and Adverb Rep=‘Classifier MLP’). From

these results it is clear that the weakly-supervised localisation methods in combination

with the adverb classifier perform poorly.

These weakly-supervised action localisation methods are also tested in combination with

the proposed action modifier transformations. As before, the features in the extracted

action proposals are averaged (Avg). This operation replaces f ′(x, a) in the proposed

method. While the action modifier representation does improve the results for the ac-

tion proposals from W-TALC (+3.4 P@1), it still underperforms in comparison to the

proposed method (-6.9 P@1). However, this result does indicate W-TALC is able to

successfully filter out some irrelevant segments it is better than simply averaging all

features (73.9 P@1 versus 71.6 from Table 6.6).

Although CMCS is a newer method, it underperforms in comparison to W-TALC. This

is due to the modelling of ‘background’ video segments in this method: video segments

with little motion are assumed to not have any action taking place and are used as

negative examples. Since the actions in instructional videos are dense and many actions
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Method Attention Adverb Rep P@1

W-TALC [138]

Avg Classifier-MLP 70.5

Avg Action Modifiers 73.9

SDP Action Modifiers 76.8

CMCS [96]

Avg Classifier-MLP 69.6

Avg Action Modifiers 69.9

SDP Action Modifiers 70.5

This method SDP Action Modifiers 80.8

Table 6.11: Comparison to weakly-supervised action localisation methods, with
and without the proposed scaled dot-product (SDP) attention and action modi-
fier representations.

can be subtle3, many of the negative examples detected in CMCS are actually examples

of actions with relevant adverbs.

Finally, relevant segments detected by the weakly-supervised action localisation methods

are combined with the scaled dot-product attention (SDP). This tests whether the two

approaches are complementary. From Table 6.11 it can be concluded that using the

output of a weakly-supervised action localisation method is insufficient. The proposed

scaled dot-product attention is able to improve the result for W-TALC, however joint

optimisation on the full video clips still performs best.

6.5 Conclusion

This chapter has presented work on understanding how different actions are performed

by learning from adverbs in instructional videos in a weakly-supervised manner. This

expands the scope of previous chapters which have focussed on how-well a task is per-

formed overall. Instead, this chapter uses narrations from instructional videos as a guide

to indicate which steps within a task require a particular performance and learns a model

which is capable of determining whether actions are performed in this manner. It is pos-

sible to imagine future work which extends this method to provide feedback to people

following either instructional videos or written instructions.

The proposed method learns to obtain and embed the relevant parts of the video with

3particularly in combination with an adverb such as slowly
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scaled dot-product attention, using the narrated action as a query. Adverbs are then

represented as action modifiers: linear transformations in the embedding space, which are

shared between actions. This method is evaluated for the tasks of video-to-adverb and

adverb-to-video retrieval and successfully outperforms existing works used for recognition

of object attributes. The ablation study demonstrates the importance of the action query

and that learning a good action embedding from the weak supervision is key to being

able to disentangle the adverb’s representation from the action to which it applies.

Future Work

The method used to attend to relevant action segments could be improved. As seen in

Section 6.4, when there are multiple instances of the same action within the temporal

window, the proposed method is unable to distinguish between them. Therefore, further

context is needed. The most obvious way to incorporate this is by using the noun of the

relevant object as a query in the attention in addition to the action’s verb. In many cases

the object is not explicitly mentioned, instead referred to as ‘this’ or ‘it’, however co-

reference resolution or visual grounding [63] could by explored as a method to determine

what ‘this’ and ‘it’ refer to. While the noun is the most obvious addition, further context

from the rest of the narration could also be explored. Another potential avenue is using

the action query for spatial attention in addition to temporal attention, as often there

are multiple actions occurring at the same time.

Additionally, the work is limited by the number of adverbs it can represent. The method

successfully models how the same adverbs can be applied to multiple different actions by

examining six adverbs: completely/partially, quickly/slowly and finely/coarsely. While

there is nothing in the method which inherently limits the number of adverbs which can

be represented by action modifiers, the per adverb results (Figure 6.13) demonstrated

that the method struggles with the imbalanced of coarsely versus finely. Therefore, either

a method which tackles this imbalance is needed, or a way to eliminate the noisy video

clips where the mentioned action is not present. This would allow adverbs to be mined

from further instructional videos so the training distribution could be balanced. It would

also be interesting to examine few-shot or zero-shot scenarios where the instances of an

adverb, or the number of actions to which the adverb applies, is limited in training.
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Chapter 7
Conclusion

This thesis has explored ‘general’ skill determination from video, where the aim is to be

able to automatically assess skill in a variety of tasks. This was examined predominantly

in the context of daily-living tasks, for instance preparing scrambled eggs or making

origami, where videos are typically longer and more complex than previous tasks studied,

such as diving. Therefore, a large focus of this thesis has been on extracting relevant

information from long videos and dealing with sparse or weak annotations.

Previous approaches for skill determination from video focused on specific domains such

as surgery or sports, where existing scoring metrics and prior knowledge about the task

can be utilised. The thesis began by exploring skill determination without task-specific

prior knowledge and found a general method could be used to learn to rank skill from

videos in a variety of different tasks. However, skill is not apparent from all parts of a

video, so it was then found that focusing on specific video parts indicative or higher or

low skill is important to be able to determine skill accurately.

This thesis then explored sharing information about skill between tasks. It established

that there are common features which can be used to determine skill, even in seemingly

unrelated tasks. However, current methods struggle to learn generalisable features and

to identify features shared between tasks using video-level supervision. Instead, the last

chapter explored weak-supervision from the narrations of instructional videos to learn a

representation for adverbs. These representations indicate how an action is performed

can be shared across different actions and tasks.
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7.1 Findings and Limitations

This section briefly summarises the findings and limitations of each chapter within this

thesis.

Chapter 3 studied skill determination in a fully-supervised setting using a ranking ap-

proach. It proposed a pairwise ranking method, which can be used to assess skill in a

variety of different tasks using pairs of videos with an obvious difference in skill as well

as pairs which are similarly ranked. This was the first work to assess skill in daily tasks

and was tested on 4 distinct types of tasks, with videos ranging from 30 seconds to 3

minutes in length. However, the method assumed all video parts to be equally impor-

tant to determining skill and was therefore unable to cope with variability in the skill

shown throughout a video. Another drawback is the need to train on tasks separately.

While the method is generally applicable to any task and does not use prior, task-specific

knowledge is does learn features unique to a particular task.

Chapter 4 explored the issue of some video parts being more important to determining

skill. The proposed approach trains temporal attention modules, learnt with only video-

level supervision using a novel rank-aware loss function. In addition, to attending to task-

relevant video parts, the proposed loss jointly trained two attention modules to separately

attend to video parts which are indicative of higher and lower skill. This chapter also

described the collection of the skill determination dataset BEST, which was larger and

contained longer tasks than existing datasets. The results showed the benefit of the

rank-aware approach, particularly for the longer and more complex tasks in BEST, such

as scrambling eggs. While this method does better focus on specific, skill-relevant parts

of a video, it doesn’t take temporal dependency into account, thus it cannot explicitly

account for the order of actions being relevant to determining skill. Additionally, this

method, like the one presented in Chapter 3, learns task-specific features for individual

tasks, thus trained models cannot be easily deployed to new skill tasks.

Chapter 5 looked at multi-task and transfer learning in the context of skill determination.

It found that multi-task learning was helpful for highly related tasks, but was otherwise

challenging to learn and does not provide an experimental benefit. Performing zero-shot

transfers between tasks highlighted some surprising relationships, for instance a model

trained on people using chopsticks has reasonable performance when ranking videos of

people rolling pizza dough and vice-versa. This chapter demonstrated that there is

potential for skill-relevant features to be shared between tasks, however this remains an

open and challenging problem, even for seemingly related tasks.

Finally, Chapter 6 shifted the focus to the performance of individual actions within a
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task and looked at how specific actions were performed, rather than how-well the overall

task was performed. It identified adverbs in instructional videos as a form of weak

supervision for this and used these narrations to learn a representation for six adverbs

which transform an action’s embedding in a latent space. The representations of these

adverbs generalise well across different actions and tasks, demonstrating this to be a

promising future direction for determining skill in accordance with instructions given

for a task. As well as the obvious limitation of the number of adverbs, this approach

also fails to take into account other key sources of information in instructional videos.

For instance, the state of particular objects can be key to a successful performance of a

task.

7.2 Directions for Future Works

This thesis explored skill determination from videos of daily-living tasks. The work

in this thesis is an initial exploration in this area, as such there are many interesting

directions for future work in skill determination. Three of these avenues are outlined

below.

Transferring Knowledge Between Tasks

The most limiting aspect of the skill determination methods presented in Chapters 3

and 4 is the need to train a separate model per task and therefore the need for a sizeable

amount of annotated data per task. Chapter 6 demonstrated that representations shared

between tasks can be learnt, however this is at the level of individual actions and requires

an external source of knowledge which links the manner of an action to skill.

Chapter 5 examined why the transfer of information between tasks was difficult, al-

though it did indicate that similar tasks, and some less related tasks, share features.

This demonstrates that transferring and sharing information between skill tasks should

be possible, although this exploration only considered the nine tasks within EPIC-Skills

and BEST. A further exploration would require more tasks to better explore the rela-

tionships between them. It seems that jointly training all tasks would not be a helpful

approach to learning generalisable and adaptable features for skill determination. In-

stead, a successful method may predict which previously learnt skill tasks, or features

within those tasks, would be useful to determining skill in a new task.

Greater Understanding of Individual Tasks

This thesis moved away from prior works in skill determination which focused on predict-
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ing skill in specific tasks, to propose ‘general’ methods applicable to determining skill in

a wide variety of daily-living tasks. The proposed methods do obtain good performance

across the variety of tasks examined in this thesis, however a method hand-crafted for a

particular task is likely to have much better performance in the specific task.

The work in Chapters 4 and 6 has moved towards identifying key parts of a video relevant

to skill in individual tasks, however models which learn a deeper understanding of global

context in individual tasks would likely be more successful. For instance, when a subject

performs an action in relation to other actions may be a key factor to determining skill

in some tasks. One way to better learn to model individual tasks without requiring

much more labelled data is to continue on the path of Chapter 6 and use narrations of

instructional videos, or text-based instructions. Further information could be gleaned

from these instructions, such as the properties of objects at particular stages of the task,

which steps are optional or which steps are temporally dependent on one another.

Feedback and Explainability

Skill determination can be used to identify whether a person needs guidance in a par-

ticular task. However, it is not yet capable of providing that guidance. To achieve this,

skill determination needs to be applied to other tasks such as retrieving the best videos

to demonstrate (part of) a task or identifying which aspects the subject needs to improve

in order to become more skilled. Chapter 4 did take a step towards this, by identifying

video parts indicative of high or low-skill. Chapter 6 is also linked to this direction, as

it used language to describe how individual actions were performed. However, this is far

from explaining many aspects of skill in a task. Generating text feedback to explain what

a person could do better or retrieving the most informative video clips to demonstrate

the difference with a skillful performance of the task would both be promising avenues

for research in this area.

7.3 Beyond Skill Determination

The main challenges in skill determination from long videos have been extracting relevant

information from videos and doing so with limited supervision. These challenges are not

unique to skill determination are also present in other video understanding tasks. As

explained in Chapter 2, a large amount of work in video understanding has focussed

on understanding short, temporally-trimmed video snippets. It is necessary to be able

to understand these types of videos, however only focussing on short videos would be

limiting. A deeper understanding of videos is be needed to move from identifying what is
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happening in a video to answering other questions such as how and why it is happening.

In such problems, picking out key information from long videos will be paramount.

Chapters 3 and 4 both proposed methods for fine-grained ranking in video, with Chap-

ter 4 focussing on identifying which parts of the video were key to the final ranking.

Particularly as these methods target ‘general’ skill determination, they are adaptable

and can learn relevant features for a given task. This also means that these methods

could be applied to different video ranking problems outside of skill. For instance, in-

stead of ranking how-well as person completes a task, the videos could be ranked by their

usefulness to instruct another person in the task. Online videos could also be ranked by

their expected interestingness to a user or their virality. Another possibility is extend-

ing the relative attributes problem, studied in images [131, 173], into the video domain.

These problems would all require ranking of videos where only certain video parts may

be useful, thus the rank-aware attention method from Chapter 4 would allow these tasks

to be explored.

The work from Chapter 6 could also be applied to other video understanding problems.

The proposed method uses weak supervision from the narrations of instructional videos

to learn a representation for adverbs which is shared across actions and tasks. A key

component of the method is learning a weakly-supervised embedding, where the em-

bedded action acts as a query to identify relevant video parts. This attention could

also be applied for other problems which require close inspection of a particular action,

such as identifying the object used in the action or the state changes of that object.

With additional constraints the method could also be applied to localisation of actions

or steps in instructional videos. Beyond actions, a similar approach could be taken for

identifying attributes of objects in video, which instead learns a weakly-supervised object

embedding.

The adverbs representations learnt in Chapter 6 are not only applicable to determining

skill and could be useful in other areas of video understanding. For instance, the ability

to represent adverbs effectively could lead to better video captioning methods, which are

able to describe fine-grained differences between videos. Adverbs could also be used in

fine-grained action recognition or retrieval. For example, the action ‘scrub’ is defined as

‘to rub something hard in order to clean it’1, thus the adverb ‘hard’ is a key factor in

distinguishing between the actions ‘scrub’ and ‘rub’. These are only a couple of examples

of tasks where a deeper understanding of language through adverbs could be useful for

video understanding.

1from the Cambridge English Dictionary
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Appendix A

Method Knot-Tying Needle-Passing Suturing

Zia et al. [219] 0.62 -0.19 0.37
This method 0.43 0.19 0.27

Table 1: Comparison between the proposed method from Chapter 3 and a
method using kinematic data specifically for surgical tasks. Methods are com-
pared using Spearman’s rank correlation where values range between -1 and 1.

Although this thesis aims for a general method to determine skill, not specific to any
task, its interesting to examine how close the proposed generic method comes to previous
task-specific methods. The results on each of the Surgery tasks using the method from
Chapter 3 are compared against the motion features proposed by Zia et al. [219]. Zia et
al. use kinematic data from the surgical arms to extract several features: sequential
motion textures, discrete Fourier transform, discrete cosine transform and approximate
entropy. These features are then used to estimate the OSATS scores. The success
of these features for predicting skill in surgical tasks is reliant on the repetitive and
predictable nature of the tasks [219]. While it is possible to predict these features from
video data [221], there are no published results on predicting the OSATS scores on the
tasks within the JIGSAWS dataset.

To compare to this approach, 8-fold leave-one-user-out cross validation is used and Spear-
man’s rank correlation (ρ) is employed to measure the correlation between predicted and
ground-truth scores of the left out user. Results are available in Table 1. Although the
proposed method outperforms the result from Zia et al. in Needle-Passing, it falls short
in both Knot Tying and Suturing. From these results it can be concluded that there is a
long way to go for a general skill determination method to reach the level of task-specific
method performance. While the proposed method is suitable for skill determination in
daily-tasks, task-specific approaches are more successful where available.
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