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Abstract
We present a method to learn a representation for ad-

verbs from instructional videos using weak supervision from
the accompanying narrations. Key to our method is the fact
that the visual representation of the adverb is highly depen-
dant on the action to which it applies, although the same
adverb will modify multiple actions in a similar way. For
instance, while ‘spread quickly’ and ‘mix quickly’ will look
dissimilar, we can learn a common representation that al-
lows us to recognize both, among other actions.

We formulate this as an embedding problem, and
use scaled dot-product attention to learn from weakly-
supervised video narrations. We jointly learn adverbs as in-
vertible transformations operating on the embedding space,
so as to add or remove the effect of the adverb. As there is
no prior work on weakly supervised learning of adverbs,
we gather paired action-adverb annotations from a subset
of the HowTo100M dataset for 6 adverbs: quickly/slowly,
finely/coarsely, and partially/completely. Our method out-
performs all baselines for video-to-adverb retrieval with
a performance of 0.719 mAP. We also demonstrate our
model’s ability to attend to the relevant video parts in or-
der to determine the adverb for a given action.

1. Introduction

Instructional videos are a popular type of media watched
by millions of people around the world to learn new skills.
Several previous works aimed to learn the key steps neces-
sary to complete the task from these videos [1, 30, 45, 62].
However, identifying the steps, or their order, is not all one
needs to perform the task well; some steps need to be per-
formed in a certain way to achieve the desired outcome.
Take for example the task of making a meringue. An expert
would assure you it is critical to add the sugar gradually and
avoid over-beating by folding the mixture gently.

This is related to recent efforts on assessing the perfor-
mance of daily tasks [10, 11, 26], however, these works do
not assess individual actions or identify whether they have
been performed as recommended by, say, a recipe. As in

Figure 1. We learn a joint video-text embedding space from in-
structional videos and accompanying action-adverb pairs in the
narration. Within this space, we learn adverbs as action modifiers
— that is transformations which modify the action’s embedding.

the example before, steps with such caveats are often in-
dicated by adverbs describing how actions should be per-
formed. These adverbs (e.g. quickly, gently, ...) generalize
to different actions and modify the manner of an action. We
thus learn these as action modifiers (Fig. 1).

To learn action modifiers for a variety of tasks and ac-
tions, we utilize the online resource of instructional videos
with accompanying narrations. However, this form of su-
pervision is weak and noisy. Not only are the narrations
just roughly aligned with the actions in the video, but often
the narrated actions may not be captured in the video alto-
gether. For example, a YouTube instructional video might
be narrated as “pour in the cream quickly” but the visuals
only show the cream already added. In this case the video
would not be useful to learn the adverb ‘quickly’.

As the main contribution of this paper, we propose the
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first method for weakly supervised learning from adverbs,
in which we embed relevant video segments in a latent
space and learn adverbs as transformations in this space.
We collect action-adverb labels from narrations of a subset
of tasks in the HowTo100M dataset [33]. The method is
evaluated for video-to-adverb retrieval, as well as adverb-
to-video retrieval and shows significant improvements over
baselines. Additionally, we present a comprehensive abla-
tion study demonstrating that jointly learning a good action
embedding is key to learning action modifiers.

2. Related Work
We review works which learn from instructional videos,

followed by works using parts-of-speech in video. We then
review the related task of object attributes in images and
methods which learn embeddings under weak supervision.

Instructional Videos. Movies accompanied by subtitles
and scripts have been used for learning from video [12, 13,
25, 47]. However, movies typically focus on talking heads
with few object interactions. More recently, instructional
videos are a popular source of datasets [1, 33, 44, 60] with
hundreds of online videos of the same task. Narrations are
used to learn steps of complex tasks [1, 18, 30, 42, 45, 62],
and more recently for video retrieval [33], visual ground-
ing [17, 19], action segmentation [60] and learning actions
through object state changes [2, 14].

In this work, we offer a novel insight into how these
instructional videos can be used beyond step identifica-
tion. Our work utilizes videos from the recently released
HowTo100M dataset [33], learning adverbs and their rele-
vance to critical steps in these tasks.

Learning from Parts-of-Speech in Video. Several prob-
lems are at the intersection between language and video:
captioning [24, 38, 55, 59], retrieval [9, 16, 21, 31, 33, 52,
54] and visual question answering [15, 56, 57, 61]. The
majority of these works use LSTMs or GRUs to combine
words into sentence-level features. While some works use
learned pooling [32] or attention [55, 56, 57], they do not
use knowledge of the words’ parts-of-speech (PoS).

A few recent works differentiate words by their PoS tags.
Xu et al. [54] learn a joint video-text embedding space after
detecting (subject, verb, object) triplets in the input caption.
Wray et al. [52] perform fine-grained action retrieval by
learning a separate embedding for each PoS before combin-
ing these embeddings. Both works focus on verb and noun
PoS, as they target action recognition. Alayrac et al. [1]
also use verb-noun pairs; the authors use direct object re-
lations to learn unsupervised clusterings of key steps in in-
structional videos.

While some adverbs are contained in video captioning
datasets [24, 59], no prior captioning work models or recog-
nizes these adverbs. The only prior work to utilize adverbs

is that of Pang et al. [39] where many adverbs in the ADHA
dataset model moods and facial expressions (e.g. ‘happily’,
‘proudly’). The work uses full supervision including action
bounding boxes. Instead, in this work we target adverbs that
represent the manner in which an action is performed, using
only weak supervision from narrations.

Object Attributes in Images. Adverbs of actions are anal-
ogous with adjectives of objects. Learning adjectives for
nouns has been investigated in the context of recognizing
object-attribute pairs [4, 7, 20, 34, 36, 37, 50, 51] from im-
ages. Both [7, 34] tackle the problem of contextuality of
attributes, where the appearance of an attribute can vastly
differ depending on the object it applies to. Chen and Grau-
man [7] formulate this as transfer learning to recognize un-
seen object-attribute compositions. Misra et al. [34] learn
how to compose separate object and attributes classifiers
for novel combinations. Instead of using classifiers to rec-
ognize attributes, Nagarajan and Grauman [36] model at-
tributes as a transformation of an object’s embedding. Our
work is inspired by this approach.

While some works learn attributes for actions [28,
43, 58], these detect combinations of specific attributes
(e.g. ‘outdoor’, ‘uses toothbrush’) to perform zero shot
recognition and do not consider adverbs as attributes.

Weakly Supervised Embedding. Learned embeddings
are commonly used for retrieval tasks, however few works
have attempted to learn embeddings under weak supervi-
sion [3, 35, 46, 53]. In [3], weak supervision is overcome
using a triplet loss that only optimizes distances to the defi-
nite negatives and identifies the best matching positive. Two
works [35, 46] perform video moment retrieval from text
queries without temporal bounds in training. Similar to our
approach, both use a form of text-guided attention to find
the relevant portion of the video, however these use the full
sentence. In our work, we simultaneously embed the rele-
vant portion of the video while learning how adverbs mod-
ify actions. We detail our method next.

3. Learning Action Modifiers
The inputs to our model are action-adverb narrations and

the accompanying instructional videos. Fig. 2(a) shows a
sample instructional video, narrated with “...start by quickly
rolling our lemons...”, from which we identify the action roll
and the adverb quickly (see Sec. 4 for NLP details). After
training, our model is able to assess whether videos in the
test set, of the same or different action, have been achieved
quickly, among other learned adverbs.

We present an overview of our method in Fig. 2. We
learn a joint video-text embedding shown in Fig. 2(b),
where the relevant video parts are embedded (blue dot)
close to the text representation of the adverb-modified ac-
tion ‘roll quickly’ (yellow dot). We review how joint video-



Figure 2. (a) Our input is a video x with the weak label (a,m) for the action and adverb respectively. (b) We aim to learn a joint video-text
embedding space for adverb and video retrieval where the embedded video (blue) and action-adverb text representation (yellow) are close.
(c) We learn adverbs as action modifiers which are transformations in the embedding space. (d) We embed f ′(x, a), a visual representation
of the relevant video parts using multi-head scaled dot-product attention where the query is a projection of the action embedding g(a).

text embeddings are typically learned in Sec. 3.1. This sec-
tion also introduces the notations for the rest of the paper.

Two prime challenges exist in learning the embedding
for our problem, i.e. learning from adverbs in instructional
videos. The first is disentangling the representation of the
action from the adverb, allowing us to learn how the same
adverb applies across different actions. We propose to learn
adverbs as action modifiers, one per adverb, as in Fig. 2(c).
In Sec. 3.2 we introduce these action modifiers, which we
represent as transformations in the embedding space.

The second challenge is learning the visual represen-
tation from the relevant parts of the video in a weakly-
supervised manner, i.e. without annotations of temporal
bounds. In Sec. 3.3, we propose a weakly-supervised em-
bedding function that utilizes multi-head scaled dot-product
attention. This uses the text embedding of the action as the
query to attend to relevant video parts, as shown in Fig. 2(d).

3.1. Learning an Action Embedding

Our base model is a joint video-text embedding, as
in [32, 52, 54]. Specifically, given a set of video clips x ∈ X
with corresponding action labels a ∈ A, our goal is to ob-
tain two embedding functions, one visual and one textual,
f : X → E and g : A → E such that f(x) and g(a) are
close in the embedding space E and f(x) is distant from
other action embeddings g(a′). These functions f and g
can be optimized with a standard cross-modal triplet loss:

Ltriplet = max(0,d(f(x), g(a))

−d(f(x), g(a′)) + β) s.t. a′ 6= a (1)

where a′ is an action different to a, d is the Euclidean dis-
tance and β is the margin, set to 1 in all experiments. We
use g(a) as the GloVe [41] embedding of the action’s verb,
and explain how we replace f(x) by f ′(x, a) in Sec. 3.3.

3.2. Modeling Adverbs as Action Modifiers

While actions exist without adverbs, adverbs are by defi-
nition tied to the action, and only gain visual representation
when attached to one. Although adverbs have a similar ef-
fect on different actions, the visual representation is highly
dependent on the action. Therefore, we follow prior work
from [36] on object-attribute pairs and model adverbs as
learned transformations in the video-text embedding space
E (Sec. 3.1). As these transformations modify the embed-
ding of the action, we call them action modifiers. We learn
an action modifier Om for each adverb m ∈M , such that

Om(z) =Wmz (2)

where z is any point in the embedding space E and
Om : E → E is a learned linear transform by a weight ma-
trixWm. In Sec. 5, we test other geometric transformations:
fixed translation, learned translation and nonlinear transfor-
mation. Each transformation Om can be applied to any text
representationOm(g(a)) or video representationOm(f(x))
in E to add the effect of the adverb m.

A video x ∈ X , labeled with action-adverb pair (a,m),
contains a visual representation of the adverb-modified ac-
tion. We thus aim to embed f(x) close to Om(g(a)). This
is equivalent to embedding the inverse of the transformation
O−1m (f(x)) near the action g(a). We thus jointly learn our
embedding, with the action modifiers Om, using the sum of
two triplet losses. The first focuses on the action:

Lact = max(0,d(f(x), Om(g(a)))

−d(f(x), Om(g(a′))) + β) s.t. a′ 6= a (3)

where a′ is a different action and d and β are the distance
function and margin as in Sec. 3.1. Similarly, we have a



triplet loss that focuses on the adverb, such that:

Ladv = max(0,d(f(x), Om(g(a)))

−d(f(x), Om(g(a))) + β) (4)

where m is the antonym of the labeled adverb m (e.g. when
m = ‘quickly’, the antonym m = ‘slowly’). We restrict the
negative in Ladv to only the antonym to deal with adverbs
not being mutually exclusive. For instance, a video labeled
‘slice quickly’ does not preclude the slicing being also done
‘finely’. However, it surely has not been done ‘slowly’. We
demonstrate the effect of this choice in Sec. 5.

3.3. Weakly Supervised Embedding

All prior works that learn attributes of objects from im-
ages [7, 20, 34, 36, 37] utilize fully annotated datasets,
where the object the attributes relate to is the only object
of interest in the image. In contrast, we aim to learn action
modifiers from video in a weakly supervised manner. Our
input is untrimmed videos containing multiple consecutive
actions. To learn adverbs, we need the visual representa-
tion to be only from the video parts relevant to the action
(e.g. ‘roll’ in our Fig. 2 example). We propose using scaled
dot-product attention [49], where the embedded action of
interest acts as a query to identify relevant video parts.

For each video x, we use a temporal window of size T ,
centered around the timestamp of the narrated action-
adverb pair, containing video segments {x1, x2, ..., xT }.
We start from the visual representation of all segments
f(x) = {f(x1), ..., f(xT )}, where f(·) is an I3D network.
From this, we wish to learn an embedding of the visual fea-
tures relevant to the action a, which we call f ′(x, a). In-
spired by [49], we project f(x) into keys K and values V :

K =WKf(x); V =WV f(x) (5)

We then set the query Q = WQg(a) to be the projection
of the action embedding, to weight video segments by their
relevance to that action. The attention weights are obtained
from the dot product of the keys K and the action query Q.
These then pool the values V . Specifically:

H(x, a) = σ

(
(WQg(a))>WKf(x)√

T

)
WV f(x) (6)

where H(x, a) is a single attention head and σ is the soft-
max function. We train multiple attention heads such that,

f ′(x, a) =WH [H1(x, a), ...,Hh(x, a)] (7)

where WH projects the concatenation of the multiple at-
tention heads Hi(x, a) into the embedding space. We learn
h attention head weights: WQ

i ,W
K
i ,WV

i as well as WH

parameters for our weakly-supervised embedding.

It is important to highlight that these weights are jointly
trained with the embedding spaceE, so that f ′(x, a) is used
instead of f(x) in Equations 3 and 4. We opted to explain
our embedding space before detailing how it can be learned
in a weakly-supervised manner, to simplify the explanation.

3.4. Weakly Supervised Inference

Once trained, our model can be used to evaluate cross-
modal retrieval of videos and adverbs. For video-to-adverb
retrieval, we consider a video query x and the narrated ac-
tion a, and we wish to estimate the adverb m. For example,
we have a video and wish to find the manner in which the
action ‘slice’ was performed. We use the learned function
f ′(x, a) to embed the relevant visual representation for ac-
tion a in E. We then rank adverbs by the distance from this
embedding to all modified actions ∀m : Om(g(a)).

For adverb-to-video retrieval, we consider an action-
adverb pair (a,m) as a query, embed Om(g(a)), e.g. ‘slice
finely’, and calculate the distance from this text representa-
tion to all relevant video segments ∀x : f ′(x, a). For both
cases, this allows us to use a to query to the weakly super-
vised embedding, so as to attend to the relevant video parts.

4. Dataset
HowTo100M [33] is a large scale dataset of instruc-

tional videos collected from YouTube. Each video has a
corresponding narration from manually-entered subtitles or
Automatic Speech Recognition (ASR). No ground-truth is
available in terms of correct actions or temporal extents.

To test cross-task generalization, we use the same 83
tasks previously used in [62]. These come from cooking,
DIY and car maintenance, and are divided into 65 tasks for
training and a disjoint set of 18 tasks for testing. However,
in [62], only 30 videos per task were used in training. In-
stead, we use all videos available for these 65 training tasks,
where each task consists of 100-500 videos. In total, we
have 24,558 videos in training and 1,280 videos in the test
set. For these we find action-adverb pairs as follows.

We use the accompanying narrations to discover action-
adverb pairs, for both training and testing. First we em-
ploy T-BRNN [48] to punctuate the subtitles1, then per-
form Part-of-Speech (POS) tagging with SpaCy’s English
core web model. We search for verb→adverb relationships
with the advmod dependency, indicating the adverb modi-
fies the verb. We exclude verbs with VBD (past tense) and
VBZ (third person singular) tags as these correlate with ac-
tions not being shown in the video. For example, in ‘sprin-
kle some finely chopped coriander’, ‘chopped’ is tagged
with VBD. Similarly, in ‘everything fits together neatly’,
the verb ‘fits’ is tagged as VBZ. Examples of the (action, ad-
verb) pairs obtained from the pipeline with the correspond-

1Note: YouTube ASR lacks punctuation



Figure 3. Log-scaled y-axis shows instances of each adverb plotted per action. We display adverbs against their paired antonym (+/- axis).

Figure 4. Example videos and narrations, highlighting the action
and adverb discovered with our NLP pipeline. In some cases the
weak timestamp is a good localization of the action (top), how-
ever in others the action is long (second), the timestamp is a poor
match (third), or the action is not captured in the video (bottom).

ing video snippets are shown in Fig. 4. Additionally, we
manually filter actions and adverbs that are not visual, e.g.
‘recommend’ and ‘normally’, respectively. We explored au-
tomatic approaches such as word concreteness scores [5],
but found these approaches to be unreliable. We also group
verbs into clusters to avoid synonyms as in [8], i.e. we con-
sider ‘put’ and ‘place’ as the same action. From this pro-
cess, we obtain 15,266 instances of action-adverb pairs.

However, these have a long tail of adverbs that are men-
tioned only a handful of times. We restrict our learn-
ing to 6 commonly used adverbs, that come in 3 pairs of
antonyms: ‘partially’/‘completely’, ‘quickly’/‘slowly’ and
‘finely’/‘coarsely’. These adverbs appear in 263 unique
action-adverb pairs with 72 different actions. We show the
distribution of adverbs per action in Fig. 3. While our train-
ing is noisy, i.e. actions might not appear in the video (refer
to Fig. 4 bottom), we clean the test set for accurate evalua-
tion of the method. We only consider test set videos where

the action-adverb is present in the video and appears within
the 20 seconds around the narration timestamp. These cor-
respond to 44% of the original test set, which is comparable
to the 50% level of noise reported by the authors in [33].

This results in 5,475 action-adverb pairs in training and
349 in testing. We consider the mean timestamp between
the verb and adverb narrations as the weak supervision for
the action’s location. These action-adverb weak timestamp
annotations and accompanying code are publicly available2.

5. Experiments
We first describe the implementation details of our

method, followed by the metrics we use for evaluation. We
then present our results against those of baselines and eval-
uate the contribution of the different components.

Implementation Details. We sample all videos at 25fps
and scale to a height of 256 pixels. We use I3D [6] with 16
frame segments, pre-trained on Kinetics [22], for both RGB
and optical flow. We concatenate these to create 2048D fea-
tures, extracted once per second as in [62], for T = 20
seconds around the narration timestamp.

In all experiments, our embedding space E is 300D, the
same as the GloVe word representation [41]. We initialize
the action embeddings with the verb’s GloVe vector, pre-
trained on the Wikipedia and Gigaword corpora. The action
modifiers Om are initialized with the identity matrix such
that they have no effect at first. For our scaled dot-product
attention, Q is of size 75×1 and K and V are of size 75×T .
We use 4 attention heads in f ′(x, a).

All our models are trained with the Adam optimizer [23]
for 1000 epochs with a batch size of 512 and a learning rate
of 10−4. To aid disentangling the actions and adverbs, we
first let the model learn only actions (optimized by Ltriplet)
for 200 epochs before introducing the action modifiers. The
weights of the action modifiersWm (Eq. 2) are then learned
at a slower rate of 10−5.

Evaluation Metric. We report mean Average Preci-
sion (mAP) for video-to-adverb and adverb-to-video re-
trieval. For video-to-adverb given a video and the narrated

2https://github.com/hazeld/action-modifiers

https://github.com/hazeld/action-modifiers


action we rank the 6 adverbs’ relevance. For adverb-to-
video given an adverb query (e.g. ‘slowly’), we rank videos
by the distance of each video labelled with its associated
action (e.g. ‘put’) to the text embedding of the verb-adverb
(e.g. ‘put slowly’) and calculate mAP across the 6 adverbs.

We also report mAP where we restrict the retrieval to the
adverb and its antonym, which we refer to as the Antonym
setting. This ‘Antonym’ metric better represents the given
labels, therefore we use it for the ablation study. To clar-
ify, we may have a video narrated ‘cut coarsely’. We are
thus confident the cut was not performed ‘finely’, however
we cannot judge the speed of (‘quickly’ or ‘slowly’). In
Antonym video-to-adverb, there are only two possible ad-
verbs to retrieve, thus we report Precision@1 (P@1) which
is the same as binary classification accuracy. Similarly, we
report mAP Antonym for adverb-to-video retrieval, where
we only rank videos labeled with the adverb or its antonym.

5.1. Comparative Results

We first compare our work to baselines. Since ours is the
first work to learn from adverbs in videos, we adapt meth-
ods that learn attributes of objects in images for compari-
son, as this is the most similar existing task to ours. In this
adaptation, actions replace objects, and adverbs replace at-
tributes/adjectives.

We compare to RedWine [34] and AttributeOp [36] as
well as the LabelEmbed baseline proposed in [34] which
uses GloVe features in place of SVM classifier weights. We
replace the image representation by a uniformly weighted
visual representation of video segments. Similar to our eval-
uation, we report results when the action is given in testing,
referred to as the ‘oracle’ evaluation in [36]. Furthermore,
for a fair comparison, we use only the antonym as the neg-
ative in each method’s loss, as we do in Eq. 4. AttributeOp
proposes several linguistic inspired regularizers; we report
the best combination of regularizers for our dataset — the
auxiliary and commutative regularizers. We also compare
to random chance and a naive binary classifier per adverb
pair. This classifier is analogous to the Visual Product base-
line used in [34, 36]. We report on both versions of this
baseline, a Linear SVM which trains a binary one-vs-all
classifier per adverb (Classifier-SVM) and a 6-way MLP of
two fully connected layers (Classifier-MLP). In video-to-
adverb, we rank adverbs by classifiers’ confidence scores,
as in [36]. In adverb-to-video, we use the confidence of the
corresponding classifier or MLP output to rank videos.

Comparative results are presented in Table 1. Our
method outperforms all baselines for video-to-adverb re-
trieval, both when comparing against all adverbs and when
restricting the evaluation to antonym pairs. We see that At-
tributeOp is the best baseline method, generally perform-
ing better than both RedWine and LabelEmbed. The two
latter methods work on a fixed visual feature space, thus

Method
video-to-adverb adverb-to-video

Antonym All Antonym All

Chance 0.500 0.408 0.511 0.170

Classifier-SVM 0.605 0.532 0.563 0.264

Classifier-MLP 0.685 0.602 0.603 0.304

RedWine [34] 0.693 0.594 0.595 0.290

LabelEmbed [34] 0.717 0.621 0.618 0.297

AttributeOp [36] 0.728 0.612 0.597 0.350

Ours 0.808 0.719 0.657 0.329

Table 1. Comparative Evaluation. Best performance in bold and
second best underlined. We report results for both video-to-adverb
and adverb-to-video retrieval with results restricted to the adverb
and its antonym (Antonym) and when unrestricted (All).

are prone to errors when the features are non-separable in
that space. We can also see that LabelEmbed performs
better than RedWine across all metrics, demonstrating that
GloVe features are better representations than SVM clas-
sifier weights. While AttributeOp marginally outperforms
our approach on adverb-to-video ‘All’, it underperforms on
all other metrics, including our main objective, estimating
the correct adverb over its antonym for a video query.

5.2. Qualitative Results

Fig. 5 presents video examples. For each, we demon-
strate attention weights for several action queries. Our
method is able to successfully attend to segments relevant
to various query actions. The figure also shows predicted
actions, and predicted adverb when using the ground-truth
action as the query. Our method is able to predict the correct
adverb. In the last example, predicted actions are incorrect,
but the method correctly identifies a relevant segment and
that the action was done ‘slowly’. We provide further in-
sights into the learned embedding space in supplementary.

5.3. Ablation Study

We report 4 ablation studies on the various aspects of
the method: the choice of action modifier transformation
Om(·), our scaled dot-product attention, the contributions
of the loss functions, and the length of the video (T ). We
focus on video-to-adverb retrieval in the ablation using the
Antonym P@1 metric, as this allows us to answer questions
like: “was the ‘cut’ performed ‘quickly’ or ‘slowly’?”.

Action Modifier Representation. In Table 2 we exam-
ine different representations for the action modifiers Om(·)
(Eq. 2). We compare to a fixed translation from the GloVe
representation of the adverb (m), which is not learned, to
three learned representations. First, a learned translation



Figure 5. Qualitative Results. Temporal attention values from several action queries. The intensity of the color indicates the attention
value. Recall that we use the narrated action to weight the relevance of video segments. Using that, we display the top-5 predicted actions,
as well as the correctly predicted adverb for all cases.

Om(z) = Dimension Learned P@1

z +GloV e(m) 1D 0.735

z + bm 1D X 0.749

Wmz 2D X 0.808
Wm2

ReLU(Wm1
z + bm) 2D X 0.742

Table 2. Comparison of action modifier representation Om(·). The
linear transformation choice clearly improves results.

vector bm initialized from the GloVe embedding is used.
Second, our chosen representation - a 2D linear transforma-
tion with matrix Wm as in Eq. 2. Third, we learn a non-
linear transformation implemented as two fully connected
layers, the first with a ReLU activation.

Results show the linear transformation clearly outper-
forms a vector translation or the non-linear transformation.
The translation vector does not having enough capacity to
represent the complexity of the adverb, while the nonlinear
transform is prone to over-fitting.

Temporal Attention. In Table 3, we compare our proposed
multi-head scaled dot-product attention (Sec. 3.3) with al-
ternative approaches to temporal aggregation and attention.
In this comparison, we also report action retrieval results,
with video-to-action mAP. That is, given the embedding of

the video f ′(x, a) queried by the ground-truth action, we
rank all actions in the embedding ∀a : g(a) by their dis-
tances to the visual query and evaluate the rank of the cor-
rect action. Our method does not aim for action retrieval as
it assumes knowledge of the ground-truth action, however
this metric evaluates the quality of the weakly supervised
embedding space. Results are compared to:
• Single: uses only a one-second clip at the timestamp.
• Average: uniformly weights the T features.
• Attention from [29]: widely used class agnostic at-

tention, calculating attention with two fully connected
layers, f ′(x, a) = σ(w1 tanh(W2f(x)))W3f(x).

• Class-specific Attention: a version of the above with
one attention filter per action class.
• Ours w/o two-stage optimization: our attention with-

out the first 200-epoch stage of learning action triplets
without learning adverbs/modifiers.
• Ours: our attention as described in Sec. 3.3.

Table 3 demonstrates superior performance of our method
for the learning of action embeddings and, as a conse-
quence, better learning of action modifiers. These results
also demonstrate the challenge of weak-supervision, with
video-to-action only performing at 0.246 mAP when con-
sidering only one second surrounding the narrated action.
This improves to 0.692 with our method.



Method Action Adverb

Single 0.246 0.705
Average 0.257 0.716
Attention from [29] 0.235 0.708
Class-specific Attention 0.401 0.728

Ours w/o two-stage optimization 0.586 0.774
Ours 0.692 0.808

Table 3. Comparison of temporal attention methods. We report
video-to-action retrieval mAP and video-to-adverb retrieval P@1.

Figure 6. Performance as T increases. Blue (axis and plot) shows
video-to-action retrieval mAP while red shows video-to-adverb re-
trieval with Antonym P@1.

Loss Functions. We also evaluate the need for two separate
loss functions (Eqs. 3 and 4). As an alternative approach
we use a single loss where the negative contains a different
action, a different adverb or both. This performs worse by
0.03 P@1. Using both losses, but with another adverb as
opposed to only the antonym m in Equation 4 also results
in worse performance by 0.04 P@1.

Effect of T . In Fig. 6, we evaluate how the length of the
video (T ) extracted around the weak timestamp affects the
model (Sec. 3.3). For larger T , videos are more likely to
contain the relevant action, but also other actions. Our em-
bedding function f ′(x, a) is able to ignore other actions in
the video, up to a point, and successfully learn to attend to
the relevant parts given the query action, resulting in better
performance with T ∈ {20 . . 30}.

Comparison with Action Localization. In this work, we
perform weakly supervised embedding to learn action mod-
ifiers by attending to action relevant segments. Here, we test
whether weakly supervised action localization can be used
instead of our proposed attention, to locate key segments
before learning action modifiers.

We use published code of two state-of-the-art weakly su-
pervised action localization methods: W-TALC [40] and
CMCS [27]. First, we test the output of these methods
with a binary adverb-antonym classifier (Classifier-MLP
as in Sec. 5.1). We also test these methods in combi-
nation with our embedding and action modifier transfor-

Method Attention Adverb Rep P@1

W-TALC [40]
Avg Classifier-MLP 0.705

Avg Action Modifiers 0.739

SDP Action Modifiers 0.768

CMCS [27]
Avg Classifier-MLP 0.696

Avg Action Modifiers 0.699

SDP Action Modifiers 0.705

Ours SDP Action Modifiers 0.808

Table 4. Comparison of our method (Ours) to weakly supervised
action localization methods, with and without our scaled dot-
product (SDP) and action modifier representations.

mations. For this, we use the methods’ predicted action-
relevant segments, and average their representation to re-
place f ′(x, a) (Avg). Finally, we combine these relevant
segments with our scaled dot-product attention (SDP).

From Table 4 we can conclude that using the output of a
weakly-supervised localization method is insufficient, and
our joint optimization performs best. Worth noting, local-
izing the action using W-TALC followed by averaging rel-
evant segments outperforms averaging all segments (0.739
vs. 0.716 from Table 3). This shows that W-TALC is ca-
pable of finding some relevant segments. This is further
improved by our scaled dot-product attention.

6. Conclusion
This paper presents a weakly supervised method to learn

from adverbs in instructional videos. Our method learns
to obtain and embed the relevant part of the video with
scaled dot product attention, using the narrated action as
a query. The method then learns action modifiers as linear
transformations on the embedded actions; shared between
actions. We train and evaluate our method on parsed action-
adverb pairs sourced from YouTube videos of 83 tasks. Re-
sults demonstrate that our method outperforms all baselines,
achieving 0.808 mAP for video-to-adverb retrieval, when
considering the adverb versus its antonym.

Future work will involve learning from few shot exam-
ples in order to represent a greater variety of adverbs as well
as exploring applications to give feedback to people guided
by instructional videos or written instructions.
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