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Ablation Study
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steps need to be performed in a certain way to achieve the desired outcome. These
are often identified by adverbs.

Qualitative Results

Comparison of temporal attention methods

| | | Predicted Predicted : : oDty Oy
Novelty: We learn adverbs in a manner that generalizes across actions and Actions Adverb ‘. partialy vowy ® ’
tasks. We propose a video-text embedding space, learned from weakly-supervised -] - miXx, pour, o TR gt: completely predicted: completely 50.0- 60
. . . . : . : b O (o 'k ind, fi ine PN : T |
action-adverb pairs in narrations of instructional videos. In this space, adverbs are N 5 , T A N T (el der- g””td' Fill, Y et =0
: o , , . , o) Yy wfave I % N N A Y rate . . - '
learned as action moditfiers — transformations which modify the action’s embed- T . S PETNy | s N r S ° T IR @ 77.3 %
: : : ...Mmix the coconut in warm water for about one to two minutes until the coconut is ground finely... R A I~ P
ding. Our approach addresses two main challenges: o R SO . A, 40 £
e Disentangling the action from the adverb. Learning adverbs as action modi- e WEER IO 2  75.0- =
. o o o0 : ¢ 0; o *%® ° ‘ O
fiers allows us to learn how the same adverb applies across actions. mix , } , PR S > 30 5
e Learning from the relevant parts of the video with weak supervision from the l 0.0 a0 0? ' , / 2::12 ";’)iir;' slowly S TR - << 725- 50 <
narration. Our weakly-supervised embedding uses the action as a query in ' Sl ( . mix ! . > Ui
scaled-dot product attention. P b ' o - gt: predicted:
...and then we add our sugar slowly... 70.0 = - - - —10
. 0 10 20 30 40

_gt: quickly predicted: quickly

i 4 !

5 o - 1
A .. -
s T e
EEE C 8 Y ‘
L35 NN R

g TR,

Seconds

Data

cool, melt, letel Performance as the amount of video used around the narrated timestamp in-
- compiete . . . . .

g 10" partially ~ WEN quickly WEE finely dip, dry, PIEtElY creases. With a larger window, videos are more likely to contain the relevant
: W completely W slowly  WEE coarsely burn action, but also other actions
-+ | J °
I
| + [
g l | | 11 [l | Method Attention  Adverb Rep P@1
<
a o (o
S burn, feed, slowly iy Avg Classiftier-MLP 70.5
U <
e T L T E E E L B E  E P B T XY R I IE I I L T cool, stack, = | -  :

SR LETEETEEEREEERETEE RS s R e ena, W-TALC [5] Avg Action Moditiers 73.9

S5 EgPREeTggTeECAg EGETSRZ dry ) - P
g 2 gt: slowly  predicted: quickly

- SDP Action Modifiers 76.8

The embedding space after training for videos narrated
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